o

~ ASSURANCE

(QA)
ENGINEERING

THE COMPLETE GUIDE

From Tester to Qualiiy Enginser:
Fundamenta ls, Automat ion Q
(Cypress, Robot, API) and Career .

4

Iindice Clicavel

PARTE I:

FUNDAMENTOS E CONCEITOS ESSENCIAIS DE QA

1. Capitulo 1: O Universo da Qualidade de Software

(@)

(@)

(0]

(@)

1.1. Definicao e Importancia da Qualidade de Software

1.2. Quality Assurance (QA).vs. Quality Control (QC)

1.3. O Ciclo de Vida do Desenvolvimento de Software (SDLC)

1.4. Mentalidade Shift-Left e Quality First

2. Capitulo 2: Tipos e Niveis de Testes de Software

o

2.1. APiramide de Testes

2.2. Testes Funcionais

2.3. Testes Nao Funcionais

2.4. Técnicas de Design de Testes

2.5. Testes Exploratérios e Ad-Hoc

3. Capitulo 3: Métricas e Indicadores de Qualidade

o

o

o

3.1. Cobertura de Testes

3.2. Densidade de Defeitos

3.3. Taxa de Falha e Confiabilidade

PARTE Il: PLANEJAMENTO E DOCUMENTAGAO

1. Capitulo 4: O Plano de Teste Profissional

o

o

o

o

4.1. Estrutura de um Plano de Teste

4.2. Escopo e Estratégia de Teste

4.3. Critérios de Entrada e Saida

4.4, Exemplo Pratico de Plano de Teste

2. Capitulo 5: Casos de Teste e Rastreabilidade

o b5.1. Estrutura de um Caso de Teste

o 5.2. Matriz de Rastreabilidade (RTM),

o 5.3. Exemplo Pratico de Casos de Teste

PARTE lll: FERRAMENTAS E AUTOMACAO DE TESTES

1. Capitulo 6: Jira - Gestdo de Testes e Defeitos

o 6.1. Configuracao e Tipos de Issues

o 6.2. Workflow de Defeitos

o 6.3. Dashboards e Relatdrios

o 6.4.Integracao com Ferramentas de Teste

2. Capitulo 7: JavaScript e Cypress - Automacdo Web Moderna

o 7.1. Fundamentos de JavaScript para QA

o 7.2.Introducao ao Cypress

o 7.3.Seletores e Localizadores

o 7.4. Exemplos de Scripts Cypress

o 7.5.Boas Praticas e Padrdes

3. Capitulo 8: Python e Robot Framework - Automacdo Versatil

o 8.1. Fundamentos de Python para QA

o 8.2.Introducao ao Robot Framework

o 8.3.Bibliotecas Essenciais

o 8.4. Exemplos de Scripts Robot Framework

o 8.5.Integracao com CI/CD

4. Capitulo 9: Testes de API - A Espinha Dorsal do Software

o 9.1. Fundamentos de REST e HTTP

o 9.2. Métodos HTTP e Cddigos de Status

o 9.3. Postman - Testes de APl Manuais

o 9.4. Automacao de Testes de API

o 9.5.Validacao de Respostas JSON

5. Capitulo 10: Bash, Linux e Terminal - Ambiente do QA

o 10.1. Comandos Essenciais de Terminal

o 10.2.Analise de Logs

o 10.3. Conectividade e Rede

o 10.4. Automagao com Scripts Bash

o 10.5. Gerenciamento de Processos

6. Capitulo 11: Node.js e Postman - Testes de APl Avancados

o 11.1. Fundamentos de Node.js

o 11.2.Postman Collections e Automacao

o 11.3. Testes de APl com Postman

o 11.4.Integracao com CI/CD

PARTE IV: CARREIRA E DESENVOLVIMENTO PROFISSIONAL

1. Capitulo 12: Construindo um Portfélio Vencedor

o 12.1. Componentes Essenciais do Portfélio

o 12.2.Projetos de Automacao

o 12.3. Documentacgao e Estudos de Caso

o 12.4. GitHub e Versionamento

2. Capitulo 13: Curriculo e LinkedIn Profissional

o 13.1. Estrutura de um Curriculo Vencedor

o 13.2. Palavras-Chave e Competéncias

o 13.3. Otimizacao do Perfil LinkedIn

o 13.4. Networking e Oportunidades

3. Capitulo 14: Preparacdo para Entrevistas e CertificacGes

o 14.1. Perguntas Comuns em Entrevistas

o 14.2. Certificacao ISTQB

o 14.3. OQutras CertificacOes Relevantes

o 14.4. Preparacdo Técnica e Comportamental

Prefacio

A Engenharia de Quality Assurance (QA) transcendeu o papel de simples “cacador de
bugs” para se tornar uma disciplina estratégica e essencial no ciclo de
desenvolvimento de software moderno. Em um mundo onde a velocidade de entrega
é crucial, garantir a qualidade desde o inicio do processo (shift-left) é o que diferencia
produtos de sucesso de fracassos custosos.

Este e-book foi concebido como um guia completo, pratico e profundo para
profissionais que desejam iniciar ou aprimorar sua carreira em QA. Ao longo de mais
de 100 paginas, cobrimos desde os fundamentos tedricos mais sélidos, passando por
técnicas avancadas de planejamento e documentacdo, até a aplicacdo pratica das
ferramentas de automacgao mais requisitadas pelo mercado.

Utilizamos como base a valiosa trilha de estudos fornecida pelo leitor,
complementando-a com informacdes aprofundadas, exemplos de codigo prontos
para uso, guias passo a passo e orientacoes de carreira, garantindo que vocé tenha em
maos um recurso robusto para construir um portfolio vencedor e se destacar no
mercado de trabalho.

PARTE I: FUNDAMENTOS E CONCEITOS
ESSENCIAIS DE QA

Capitulo 1: O Universo da Qualidade de Software

1.1. Definicao e Importancia da Qualidade de Software

A Qualidade de Software (QS) pode ser definida como o grau em que um sistema,
componente ou processo atende aos requisitos especificados e as necessidades ou
expectativas do cliente/usudrio. E um conceito multifacetado que abrange n3o apenas
a auséncia de defeitos, mas também a usabilidade, eficiéncia, manutenibilidade,
confiabilidade, seguranca e performance do produto.

O Custo da Nao Qualidade (CoNQ)

O Custo da Nao Qualidade (CoNQ) é um conceito crucial que todo profissional de QA
deve compreender profundamente. Ele representa todos os custos incorridos devido

a:
e Falhas em producao: Indisponibilidade do sistema, perda de dados, corrupcao
de informacdes
e Retrabalho: Correcdo de bugs, refatoracdo de codigo, reteste
e Suporte ao cliente: Atendimento a reclamacoes, resolucao de problemas
* Perda de reputacao: Danos a marca, perda de confianca dos usuarios
e Oportunidades de negocio perdidas: Clientes que ndo adotam o produto,

churn de usuarios

Estudos demonstram que quanto mais tarde um defeito é encontrado no ciclo de
desenvolvimento, mais caro se torna corrigi-lo. A regra empirica é:

Fase de Descoberta Custo Relativo de Correcao

Requisitos 1x

Design 3-6x
Desenvolvimento 10-15x
Teste 15-40x
Producao 100-1000x

Um bug encontrado em produc¢do pode custar até 1000 vezes mais do que se fosse
encontrado na fase de requisitos. Isso justifica o investimento em QA desde o inicio do
projeto.

Mentalidade de “Quality First”

A mentalidade de “Quality First” (Qualidade em Primeiro Lugar) é a base da
Engenharia de QA moderna. Ela exige que:

1. A qualidade seja uma responsabilidade compartilhada por toda a equipe
(desenvolvedores, designers, gerentes de produto, QA e lideranca)

2. A qualidade seja considerada desde o inicio do projeto, ndo apenas como uma
etapa final

3. Os processos sejam robustos para prevenir defeitos, ndo apenas detecta-los
4. A automacao seja priorizada para permitir feedback rapido e continuo

5. A cultura de qualidade seja cultivada em toda a organizagao

1.2. Quality Assurance (QA) vs. Quality Control (QC)

Embora frequentemente usados como sinénimos, Quality Assurance (QA) e Quality
Control (QC) representam abordagens distintas, mas complementares, na gestdao da
qualidade.

Caracteristica
Foco

Natureza

Quando Ocorre

Objetivo

Exemplos

Quality Assurance (QA)
Processos e Prevencao
Proativo

Durante todo o ciclo de
desenvolvimento

Garantir que 0s processos corretos
sejam seguidos para evitar defeitos

Revisdo de requisitos, Definicao de
padrdes de codificacao,
Treinamento, Auditorias,
Planejamento de testes

Responsabilidade Toda a equipe

Pergunta Chave

“Como vamos garantir qualidade?”

Quality Control (QC)
Produto e Deteccao
Reativo

Apos a conclusdo do produto ou
modulo

Identificar e corrigir defeitos no
produto final

Execucao de testes (funcionais,
regressao), Inspecdes, Revisao
de cddigo, Testes de aceitacdo

Principalmente QA/Testadores

“O produto atende aos
padroes de qualidade?”

O QA é o guarda-chuva estratégico que estabelece o como a qualidade sera alcancada.
Ele garante que o processo de desenvolvimento (o meio) seja robusto, documentado e

repetivel. O QC ¢é a tatica operacional que verifica se o produto final (o fim) atende aos
padrdes estabelecidos.

Um Engenheiro de QA moderno atua em ambas as frentes, mas com uma forte

inclinacao para a prevencao (QA). Isso significa:

e Participar de reunides de requisitos para garantir clareza

e Revisar designs e arquiteturas para identificar riscos

e Colaborar com desenvolvedores durante a implementagao

e Executar testes estratégicos (QC) quando apropriado

e Automatizar testes para feedback continuo

1.3. O Ciclo de Vida do Desenvolvimento de Software (SDLC)

O QA esta presente em todas as fases do SDLC, independentemente da metodologia
(Cascata, Agil, DevOps). Vamos detalhar cada fase:

Fase 1: Requisitos

Atividades de QA:

¢ Analise de requisitos para clareza, completude e testabilidade
¢ |dentificacao de ambiguidades e inconsisténcias
e Definicdo de critérios de aceitacdo

e Participacao em reunioes de refinamento

Exemplo: Se um requisito diz “O sistema deve ser rapido” , 0 QA questiona: “Rapido
significa menos de 1 segundo? 2 segundos? Para qual operacao?” Isso garante que os

testes sejam objetivos.

Fase 2: Design
Atividades de QA:

e Revisao da arquitetura e design para identificar potenciais pontos de falha
e Analise de fluxos de dados e integracdes
e |dentificacdo de cenarios de erro e edge cases

e Planejamento de estratégia de teste

Fase 3: Implementacao

Atividades de QA:

e Desenvolvimento de testes de unidade (muitas vezes pelo préprio
desenvolvedor)

e Desenvolvimento de testes de integracao (SDET ou QA)
e Code review com foco em testabilidade

* Preparacao de ambientes de teste
Fase 4: Teste

Atividades de QA:

e Execucao de testes funcionais e nao funcionais

e Execucao de testes de aceitacao (UAT)

e Reporte de defeitos com informacdes detalhadas

e Validagao de correcoes

Fase 5: Implantacao

Atividades de QA:

Testes de fumaca (smoke tests) no ambiente de producao

Validacao de dados migrados

Monitoramento de logs e métricas

Suporte ao rollback se necessario

Fase 6: Manutencao
Atividades de QA:

e Testes de regressao para novas funcionalidades ou corre¢des
e Monitoramento de qualidade em producao
e Analise de incidentes

e Otimizacao de testes baseada em feedback

1.4. Mentalidade Shift-Left e Quality First

Shift-Left é um conceito que significa mover as atividades de teste para a esquerda no
timeline do projeto, ou seja, comecgar mais cedo. Em vez de testar apenas no final, o
QA participa desde o inicio.

Beneficios do Shift-Left:
1. Deteccao precoce de defeitos: Bugs encontrados no inicio sdo mais baratos de
corrigir

2. Feedback continuo: Os desenvolvedores recebem feedback sobre qualidade em
tempo real

3. Reducao de retrabalho: Menos surpresas desagradaveis no final do projeto
4. Melhor colaboragao: QA e desenvolvedores trabalham juntos desde o inicio

5. Automacao eficaz: Testes automatizados podem rodar continuamente

Implementacao Pratica:

e Pair Testing: QA trabalha ao lado do desenvolvedor enquanto o codigo é escrito
e Test-Driven Development (TDD): Testes sdo escritos antes do codigo

e Behavior-Driven Development (BDD): Testes sao escritos em linguagem natural
que todos entendem

e Code Review: QA participa de revisdes de codigo

Capitulo 2: Tipos e Niveis de Testes de Software

2.1. A Piramide de Testes

A Piramide de Testes é um modelo conceitual que sugere a propor¢do ideal de
diferentes tipos de testes em um projeto. Ela foi popularizada por Mike Cohn e é
fundamental para uma estratégia de teste eficaz.

Estrutura da Piramide

/ Integracao \
/ / Servico \

R \
/ \
/ Testes de \
/ Unidade \
/ \

Base (70%): Testes de Unidade
Caracteristicas:

e Testam a menor parte testavel do codigo (funcoes, métodos, classes)

e Rapidos (executam em milissegundos)
e Baratos (faceis de escrever e manter)
¢ |solados (nao dependem de outros componentes)

e Executados frequentemente (a cada commit)

Exemplo:

// Teste de unidade para uma funcdo de cédlculo de desconto
function calculateDiscount(price, discountPercent) {
return price * (1 - discountPercent / 100);

test('calculateDiscount deve retornar preco correto', () => {
expect(calculateDiscount (100, 10)).toBe(90);
expect(calculatebDiscount (50, 20)).toBe(40);

});

Meio (20%): Testes de Integracao/Servico

Caracteristicas:
e Testam a comunicagao entre componentes
* Incluem interagoes com banco de dados, APIs externas, servicos
e Mais lentos que testes de unidade (executam em segundos)

e Mais caros de escrever e manter

e Executados frequentemente (a cada build)

Exemplo:

// Teste de integracdo para uma API de usuario
test('GET /users/:id deve retornar usuario', async () => {
const response = await request(app)
.get('/users/1")
.expect(200);

expect(response.body).toHaveProperty('id', 1);
expect(response.body).toHaveProperty('name');

)

Topo (10%): Testes de UI/E2E
Caracteristicas:

e Testam o fluxo completo do usuario

e Incluem interagcdes com a interface (cliques, digitacao)

® |Lentos (executam em segundos ou minutos)

e Caros de escrever e manter

e Frageis (quebram facilmente com mudancas na interface)

e Executados com menos frequéncia (antes de releases)

Exemplo:

// Teste E2E com Cypress
describe('Fluxo de Login', () => {
it('Usuéario deve fazer login com sucesso', () => {
cy.visit('https://example.com/login');
cy.get('input[name="email"]"').type('user@example.com');
cy.get('input[name="password"]"').type('senhal23');
cy.get('button[type="submit"]"').click();
cy.url().should('include', '/dashboard');
1)
1);

Por que essa propor¢ao?

A regra é: quanto mais baixo na piramide, mais testes, mais rapidos e mais
baratos. O objetivo é encontrar a maioria dos bugs na base, onde o custo de correcao

€ menor.

Se vocé inverter a piramide (muitos testes E2E, poucos testes de unidade), vocé tera:

e Suite de testes lenta (demora horas para rodar)
e Custo alto de manutencao
e Feedback lento para os desenvolvedores

e Maior chance de falsos positivos

2.2. Testes Funcionais

Testes funcionais verificam se o sistema atende aos requisitos e especificacdes de
negdcio. Eles focamno “oque” osistemafaz,ndoem “como” elefaz.

Tipo de Teste

Foco Principal

Explicacao Abrangente

Quando Usar

Funcional
c ; Testam a menor parte testavel
. omponentes .- -
Unidade) P N do codigo. Essenciais para Sempre, a cada
. isolados (fungoes, . . .
(Unit) , garantir a logica interna. Escritos commit
métodos)
pelo desenvolvedor.
Verificam se os mddulos Apos testes de
Integracao Fluxo de dados interagem corretamente, unidade, antes

(Integration)

entre modulos

incluindo conexoes com bancos
de dados e servicos externos.

Testam o comportamento

de testes de
sistema

Sistema O sistemacomoum completo do sistema em um Apés integracao
(System) todo ambiente que simula a estar completa
producao.
Garantem que novas alteracoes ,
N)) . Apos cada
Regressao Funcionalidades (correcdes ou novas features) mudanca no
(Regression) existentes nao quebraram funcionalidades cédigo ¢

que ja estavam funcionando.

Testes formais realizados pelo

Aceitacao Necessidades do _ Antes da release
L cliente ou Product Owner para N
(VUAT) usuario final) o i para producao
aceitar ou rejeitar o sistema.
. . Testes rapidos que verificam se ,
Fumaca Funcionalidades . . - - Apos deploy em
. as funcionalidades criticas estao)
(Smoke) criticas novo ambiente

funcionando.

Exemplo Pratico: Teste de Regressédo

Cenario: Vocé corrigiu um bug na tela de checkout onde o cupom de desconto nao
estava sendo aplicado. Agora vocé precisa executar testes de regressao para garantir
que a corre¢ao nao quebrou outras funcionalidades.

Casos de Teste de Regressao:

1. Login com credenciais validas
2. Adicionar item ao carrinho

3. Visualizar carrinho

4. Aplicar cupom de desconto valido

5. Remover cupom de desconto

6. Alterar quantidade de itens

7. Prosseguir para checkout

8. Preencher dados de entrega

9. Selecionar método de pagamento
10. Confirmar pedido

Se todos esses testes passarem, vocé tem confianca de que a corre¢ao ndao causou
regressoes.

2.3. Testes Nao Funcionais

Testes nao funcionais avaliam o quao bem o sistema funciona, focando em atributos
de qualidade como performance, seguranca, confiabilidade e usabilidade.

Tipo de Teste Nao
Funcional

Desempenho
(Performance)

Carga (Load)

Estresse (Stress)

Seguranca
(Security)

Usabilidade
(Usability)

Compatibilidade
(Compatibility)

Confiabilidade
(Reliability)

Recuperacao
(Recovery)

Foco Principal

Velocidade e
responsividade

Comportamento
sob carga esperada

Comportamento
sob carga extrema

Vulnerabilidades e
protecao de dados

Facilidade de uso e
experiéncia do
usuario

Diferentes
ambientes
(navegadores, SOs)

Estabilidade ao
longo do tempo

Capacidade de
recuperacao apods

Explicagcao Abrangente

Mede o tempo de resposta
do sistema sob condig¢des
normais. Exemplo: Pagina
deve carregar em menos de
2 segundos.

Simula o nimero esperado
de usuarios para verificar a
estabilidade. Exemplo:
Sistema deve suportar 1000
usuarios simultaneos.

Simula uma carga muito
acima do esperado para
encontrar o ponto de falha
do sistema.

Identifica falhas de
seguranca, COmo injecao
SQL, XSS, CSRF e
vulnerabilidades de
autenticacao.

Avalia a interface e a
experiéncia do usuario para
garantir que o sistema seja
intuitivo e facil de usar.

Garante que o software
funciona corretamente em
diferentes plataformas,
navegadores e dispositivos.

Testa se o sistema
permanece estavel durante
um periodo prolongado de
operagao.

Testa se o sistema consegue
se recuperar de falhas de

Métrica Tipica

Tempo de
resposta (ms)

Usuarios
simultaneos

Ponto de ruptura

Vulnerabilidades
encontradas

Satisfacdo do
usuario

Plataformas
suportadas

MTBF (Mean Time
Between Failures)

RTO (Recovery
Time Objective)

Tipo de Teste Nao

. Foco Principal Explicacao Abrangente Métrica Tipica
Funcional P picag g P

falhas forma graciosa.

Exemplo Pratico: Teste de Carga

Cenario: Vocé esta testando um e-commerce que espera 5000 usuarios simultdneos
durante a Black Friday.

Teste de Carga:

1. Simular 5000 usudrios acessando o site simultaneamente
2. Cada usuario navega por 10 paginas, adiciona 3 itens ao carrinho e faz checkout

3. Medir:
o Tempo de resposta médio

o Tempo de resposta maximo (P95, P99)
o Taxadeerro
o Throughput (requisicdes por segundo)

o Utilizagdo de CPU e memdria
Resultado Esperado:

e Tempo de resposta médio: <2 segundos
e P95:<5segundos
e Taxadeerro:<0,1%

e Throughput:> 1000 req/s
Se o teste falhar, vocé identifica o gargalo (banco de dados, servidor, rede) e otimiza
antes da Black Friday.
2.4, Técnicas de Design de Testes

As técnicas de design de testes ajudam o QA a criar casos de teste eficazes, cobrindo o
maximo de cendarios com o minimo de esforco.

Testes de Caixa Branca (White-Box)
Baseados na estrutura interna do cdédigo. O testador precisa conhecer o codigo-fonte.
Técnicas:

* Cobertura de Codigo (Code Coverage): Garante que todas as linhas de cdigo
foram executadas

e Cobertura de Branches: Garante que todos os caminhos possiveis (if/else) foram
testados

e Cobertura de Condigdes: Garante que todas as condi¢Bes logicas foram testadas

Exemplo:

function validateAge(age) {
if (age < 0) {
return "Idade ndo pode ser negativa";
} else if (age < 18) {
return "Menor de idade";
} else if (age > 120) {
return "Idade invalida";
} else {
return "Maior de idade";

// Testes para cobertura total:
test('validateAge com idade negativa', () => {
expect(validateAge(-5)).toBe("Idade ndo pode ser negativa");

)

test('validateAge com menor de idade', () => {
expect(validateAge(15)).toBe("Menor de idade");

1)

test('validateAge com idade valida', () => {
expect(validateAge(25)).toBe("Maior de idade");

1)

test('validateAge com idade muito alta', () => {
expect(validateAge(150)).toBe("Idade invéalida");
});

Testes de Caixa Preta (Black-Box)
Baseados nos requisitos e funcionalidades, sem conhecimento da estrutura interna.
Técnicas:
e Particionamento de Equivaléncia: Dividir as entradas em grupos que devem se
comportar de forma similar

* Analise de Valor Limite: Testar os limites dos grupos de equivaléncia

e Tabela de Decisao: Testar combinacoes de condi¢des

Exemplo:

// Requisito: "O sistema deve aceitar idades entre 18 e 100 anos"

// Particionamento de Equivaléncia:
// Grupo 1: Idades validas (18-100)
// Grupo 2: Idades invalidas (< 18)
// Grupo 3: Idades invalidas (> 100)

// Andlise de Valor Limite:
// Testes: 17, 18, 19, 99, 100, 101

test('Aceita idade 18 (limite inferior)', () => {
expect(isvalidAge(18)).toBe(true);

)

test('Rejeita idade 17 (abaixo do limite)', () => {
expect(isvalidAge(17)).toBe(false);
});

test('Aceita idade 100 (limite superior)', () => {
expect(isvValidAge(100)).toBe(true);
1)

test('Rejeita idade 101 (acima do limite)', () => {
expect(isvalidAge(101)).toBe(false);
1);

Testes de Caixa Cinza (Gray-Box)

Combinacgao das duas, onde o testador tem conhecimento parcial da estrutura interna
(ex: acesso a logs ou banco de dados).

2.5. Testes Exploratorios e Ad-Hoc

Testes Exploratorios sdo testes ndo roteirizados onde o testador explora o sistema de
forma criativa, buscando encontrar defeitos que testes formais podem nado encontrar.

Caracteristicas:

e N&o seguem um plano rigido

e Baseados na experiéncia e intuicao do testador

o Uteis para encontrar defeitos inesperados

e Documentados em tempo real

Exemplo de Sessao de Teste Exploratorio:

1. Objetivo: Encontrar defeitos na tela de cadastro de usuario

2. Tempo: 1 hora

3. Atividades:

o

o

Tentar cadastrar com email vazio

Tentar cadastrar com email invalido (sem @)
Tentar cadastrar com senha muito curta

Tentar cadastrar com caracteres especiais no nome
Tentar cadastrar com espagos em branco

Tentar cadastrar o mesmo email duas vezes

Tentar cadastrar com navegador em modo offline

4. Defeitos encontrados:

o

o

o

Campo de email aceita espacos em branco
Mensagem de erro ndo é clara

Botdo de envio fica desabilitado por muito tempo

Capitulo 3: Métricas e Indicadores de Qualidade

3.1. Cobertura de Testes

A Cobertura de Testes mede a porcentagem de cddigo que foi executada pelos testes.

Tipos de Cobertura:

Tipo Definicao

Cobertura de Porcentagem de linhas de
Linhas codigo executadas
Cobertura de Porcentagem de caminhos de
Branches codigo executados
Cobertura de Porcentagem de fung¢des
Funcoes testadas

Cobertura de Porcentagem de condicoes
Condigdes l6gicas testadas

Exemplo com JavaScript/Jest:

Formula Objetivo

(Linhas executadas / Total de

> 80%
linhas) X 100 °
(Branches executados / Total

>75%
de branches) X 100
(Funcoes testadas / Total de

N >80%

funcdes) X 100
Condic0es testadas / Total
(¢ / >70%

de condigdes) X 100

// arquivo.js
function calculateTotal(items) {
let total = 0;
for (let item of items) {
if (item.discount) {
total += item.price * (1 - item.discount);
} else {
total += item.price;

}

return total;

// arquivo.test.js
describe('calculateTotal', () => {
test('Calcula total sem desconto', () => {
const items = [{ price: 100, discount: 0 }];
expect(calculateTotal(items)).toBe(100);
1)

test('Calcula total com desconto', () => {
const items = [{ price: 100, discount: 0.1 }];
expect(calculateTotal(items)).toBe(90);

13K

test('Calcula total com multiplos itens', () => {
const items = [
{ price: 100, discount: 0 },
{ price: 50, discount: 0.2 }
1;
expect(calculateTotal(items)).toBe(140);
1)
1)

// Cobertura esperada: 100% de linhas, branches e funcbes

3.2. Densidade de Defeitos

A Densidade de Defeitos mede a quantidade de defeitos encontrados por unidade de
codigo.

Féormula:

Densidade de Defeitos = (Numero de Defeitos / Linhas de Cddigo) x 1000

Interpretacao:

e 0-0.5 defeitos por 1000 linhas: Excelente
e (.5-1.0 defeitos por 1000 linhas: Bom
e 1.0-2.0 defeitos por 1000 linhas: Aceitavel

e >2.0 defeitos por 1000 linhas: Ruim
Exemplo:

e Modulo A: 10 defeitos, 5000 linhas de cédigo
o Densidade=(10/5000) X 1000 =2.0 (Ruim)

e Modulo B: 3 defeitos, 5000 linhas de cédigo
o Densidade =(3/5000) X 1000=0.6 (Bom)

3.3. Taxa de Falha e Confiabilidade
A Taxa de Falha mede quantas vezes o sistema falha em um periodo.

Métricas Relacionadas:

Métrica Definicdo Formula

Total de horas / NUmero de

MTBF Tempo médio entre falhas
falhas

Total de horas de reparo /

MTTR T 2di '
e€mpo medio para reparar Ndmero de falhas

Porcentagem de tempo que o sistema

Disponibilidade (MTBF / (MTBF + MTTR)) X 100

esta disponivel

Exemplo:

e Sistema funcionou 720 horas em um més

e Teve 4 falhas

e Cada falha levou em média 2 horas para reparar

Calculos:
e MTBF=720/4=180 horas

e MTTR=(4 X 2)/4=2horas
e Disponibilidade =(180/(180+2)) X 100=98.9%

PARTE Il: PLANEJAMENTO E
DOCUMENTACAO

Capitulo 4: O Plano de Teste Profissional

O Plano de Teste é o documento fundamental que descreve o escopo, a abordagem,
0S recursos e o cronograma das atividades de teste. Ele serve como um guia para a
equipe de QA e como um contrato de qualidade com as partes interessadas.

4.1. Estrutura de um Plano de Teste

A estrutura de um Plano de Teste deve ser clara, abrangente e seguir padroes
reconhecidos como IEEE 829.

Secao Essencial

1. Introducao

2. Itens a Serem
Testados

3. Itens Nao
Testados

4. Estratégia de
Teste

5. Recursos

6. Cronograma

7. Critérios de
Entrada

8. Critérios de
Saida

9. Riscos e
Contingéncias

10. Aprovacgoes

Conteudo Detalhado

Objetivo do plano, escopo do
produto, referéncias
(documentos de requisitos).

Médulos, funcionalidades ou
requisitos que serdo incluidos no
teste.

O que explicitamente NAO sera
testado e por qué.

Abordagem geral
(manual/automacao, tipos de
testes, prioridades).

Pessoas, ferramentas, ambientes
e orcamento.

Datas de inicio e fim de cada fase
de teste.

Condigdes que devem ser
atendidas antes de iniciar os
testes.

Condigdes que devem ser
atendidas para considerar os
testes concluidos.

Riscos identificados e planos de
mitigacao.

Assinaturas de stakeholders.

Exemplo

“Este plano descreve a estratégia de
teste para o modulo de pagamento
da versdo 2.0 do e-commerce.”

“Processamento de pagamento,
valida¢do de cartdo, confirmacgao de
pedido”

“Interface de administrador (fora do
escopo), integracao com sistema

”»

legado (em desenvolvimento)

“70% automacao, 30% manual; Foco
em testes de regressao e aceita¢gdo”

“2 QA, 1 SDET, Jira, Cypress,
Postman, Ambiente de staging”

“Teste funcional: 01-15 de marco;
Teste de regressao: 16-20 de marg¢o”

“Cddigo deve estar compilado,
testes de unidade devem passar,
ambiente deve estar configurado”

“Cobertura > 80%, 0 bugs criticos,
95% dos testes devem passar”

“Risco: Ambiente de staging pode
ficar indisponivel. Mitigacdo: Usar
ambiente de backup”

“Gerente de Projeto, Lider de QA,
Product Owner”

4.2. Escopo e Estratégia de Teste

Definindo o Escopo

O escopo define exatamente o que serd e o que nado sera testado. Isso é crucial para
evitar ambiguidades.

Exemplo de Escopo Bem Definido:

ESCOPO INCLUIDO:

v/ Login com email e senha
Recuperacdo de senha
Cadastro de novo usuario
Edic&o de perfil

D NN N N

Logout
ESCOPO NAO INCLUIDO:
x Login com redes sociais (integracdo com terceiros)

x Autenticacdo de dois fatores (em desenvolvimento)
x Interface de administrador (seré testada em sprint posterior)

Estratégia de Teste
A estratégia define como vocé vai testar.

Exemplo de Estratégia:

ESTRATEGIA DE TESTE - Modulo de Autenticacéo

1. TIPOS DE TESTES:
- Testes de Unidade (desenvolvedor)
- Testes de Integracdo (QA)
- Testes Funcionais (QA)
- Testes de Seguranca (QA especializado)

2. PROPORCAO:
- 60% Automacdo (Cypress para testes EZ2E)
- 40% Manual (testes exploratorios, seguranca)

3. PRIORIDADE:
- P1 (Critica): Login, logout, recuperacdo de senha
- P2 (Alta): Validacado de email, forca de senha
- P3 (Média): Mensagens de erro, UX

4., AMBIENTE:
- Desenvolvimento: Testes de unidade
- Staging: Testes de integracdo e funcionais
- Producédo: Testes de fumaca apos deploy

5. FERRAMENTAS:
- Cypress (testes E2E)
- Postman (testes de API)

- OWASP ZAP (testes de seguranca)
- Jira (rastreamento de defeitos)

4.3. Critérios de Entrada e Saida

Critérios de Entrada
Condicdes que devem ser atendidas ANTES de iniciar os testes.

Exemplo:

CRITERIOS DE ENTRADA:

Codigo deve estar compilado sem erros

Testes de unidade devem passar (100%)
Ambiente de staging deve estar disponivel
Dados de teste devem estar carregados

Plano de teste deve ser aprovado

Ferramentas de teste devem estar configuradas

[R B A

Acesso a contas de teste deve ser fornecido

Se algum critério ndo for atendido, os testes ndo devem comecar.

Critérios de Saida
Condig¢Bes que devem ser atendidas para considerar os testes concluidos.

Exemplo:

CRITERIOS DE SAIDA:

O Cobertura de testes > 80%

0 bugs criticos ou bloqueadores

95% dos testes devem passar

Todos os bugs P1 devem ser corrigidos

Todos os casos de teste devem ser executados
Relatorio de teste deve ser gerado

Aprovacao do gerente de projeto

OO0000a00

4.4, Exemplo Pratico de Plano de Teste

PLANO DE TESTE - E-commerce v2.0 (M6dulo de Carrinho)

PLANO DE TESTE - MAédulo de Carrinho de Compras

1. Introducdo

Este plano descreve a estratégia de teste para o modulo de carrinho de
compras

da versdo 2.0 do e-commerce. O objetivo é garantir que 0s usuarios possam
adicionar, remover e modificar itens no carrinho de forma confiavel.

2. Escopo

Incluido:

- Adicionar item ao carrinho

- Remover item do carrinho

- Alterar quantidade de itens

- Aplicar cupom de desconto

- Visualizar total do carrinho

- Persisténcia de carrinho (entre sessdes)

Nao Incluido:

- Integracdo com gateway de pagamento

- Envio de email de carrinho abandonado
- Recomendacgbes de produtos

3. Estratégia de Teste

- **Tipos de Testes**: Funcional, Integracdo, E2E
- **pProporcao**: 70% Automacdo, 30% Manual

- **Ferramentas**: Cypress, Postman, Jira

- **Ambiente**: Staging

4. Recursos

- 1 QA (Teste Manual)

- 1 SDET (Automacéo)

- 1 Desenvolvedor (Suporte)

- Ambiente de Staging

- Dados de teste (100 produtos, 50 cupons)

5. Cronograma

- Teste Funcional: 01-05 de marco

- Teste de Integracdo: 06-08 de margo
- Teste E2E: 09-10 de marco

- Teste de Regressdo: 11-12 de marco
- Relatério Final: 13 de marcgo

6. Critérios de Entrada
- O Ccédigo compilado
- O Testes de unidade passando

- O Ambiente de staging disponivel
- O Dados de teste carregados
- [0 Acesso a contas de teste

7. Critérios de Saida

- [0 Cobertura > 85%

- O 0 bugs criticos

- O 98% dos testes passando

- O Todos os casos de teste executados

8. Riscos

- **Risco**: Ambiente de staging pode ficar indisponivel
Mitigacdo: Usar ambiente de backup

- **Risco**: Dados de teste insuficientes

Mitigacdo: Preparar dados adicionais antecipadamente

9. Aprovacodes

- Gerente de Projeto:
- Lider de QA:

- Product Owner:

Capitulo 5: Casos de Teste e Rastreabilidade

5.1. Estrutura de um Caso de Teste

Um Caso de Teste é um conjunto de condi¢Ges ou varidveis sob as quais um testador
determinara se um sistema atende aos requisitos.

Componentes Essenciais:

Componente

ID

Titulo

Pré-condicbes

Passos

Dados de
Entrada

Resultado
Esperado

Resultado
Atual

Status
Prioridade

Observacgoes

Descricao
Identificador Unico

Descricdo breve do que esta
sendo testado

Estado do sistema antes do
teste

AcGes especificas que o
testador deve executar

Valores especificos para o teste

O que deve acontecer se 0
teste passar

O que realmente aconteceu

Pass/Fail/Blocked
Critica/Alta/Média/Baixa

Qualquer informacao adicional

5.2. Matriz de Rastreabilidade (RTM)

Exemplo
TC-001

“Validar login com email e senha
corretos”

“Usuario ndo esta logado, conta existe
no sistema”

1. Ir para pagina de login; 2. Digitar
email; 3. Digitar senha; 4. Clicar em Login

Email: “user@example.com” , Senha:
“senhal23”

“Usuario é redirecionado para
dashboard”

Preenchido durante a execugao

Pass
Critica

“Teste executado em Chrome 120”

A Matriz de Rastreabilidade (Requirements Traceability Matrix - RTM) garante que
cada requisito tenha pelo menos um caso de teste associado.

Exemplo de RTM:

ID
Requisito

REQ-001

REQ-002

REQ-003

REQ-004

REQ-005

Descricao do Requisito

Usuario deve fazer login com
email e senha

Usuario deve receber erro
com credenciais invalidas

Usudrio deve poder
recuperar senha

Sessdo deve expirar apos 30
minutos

Senha deve ter minimo 8
caracteres

Beneficios da RTM:

ID Caso
de Teste

TC-001,
TC-002

TC-003,
TC-004

TC-005,
TC-006

TC-007

TC-008

e Garante cobertura completa de requisitos

e |dentifica requisitos sem testes

e Facilita rastreamento de defeitos para requisitos

e Ajuda na anadlise de impacto de mudancas

5.3. Exemplo Pratico de Casos de Teste

CASOS DE TESTE - Modulo de Login

Status

Coberto

Coberto

Coberto

Coberto

Coberto

Observacgoes

2 casos de teste

Testa email invalido e
senhainvalida

Testa link valido e
expirado

Teste de timeout

Validacao de forca de
senha

CASO DE TESTE TC-001
Titulo: Login com credenciais validas

ID: TC-001
Prioridade: Critica
Médulo: Autenticacao

Pré-condicdes:

- Usuario nédo esta logado

- Conta "user@example.com" existe no sistema
- Senha da conta é "senha123"

Passos:

1. Abrir navegador e acessar https://example.com/login
2. Digitar "user@example.com" no campo de email

3. Digitar "senhal23" no campo de senha

4. Clicar no bot&do "Login"

Dados de Entrada:
- Email: user@example.com
- Senha: senhal23

Resultado Esperado:

- Usuario é redirecionado para a pagina de dashboard
- URL muda para https://example.com/dashboard

- Nome do usuario aparece no canto superior direito
- Mensagem de sucesso é exibida (opcional)

Resultado Atual:

- v/ Usuario redirecionado para dashboard
- v URL correta

- v/ Nome do usuario exibido

- v/ Sem mensagem de erro

Status: PASS

Data de Execucdo: 2025-03-01
Testador: Jodo Silva

Navegador: Chrome 120

SO: Windows 10

CASO DE TESTE TC-002
Titulo: Login com email invalido

ID: TC-002
Prioridade: Alta
Médulo: Autenticacao

Pré-condicdes:
- Usuario nédo esta logado
- Email "invalido@example.com" ndo existe no sistema

Passos:

1. Abrir navegador e acessar https://example.com/login
2. Digitar "invalido@example.com" no campo de email

3. Digitar qualquer senha no campo de senha

4. Clicar no botéo "Login"

Dados de Entrada:
- Email: invalido@example.com
- Senha: qualquersenha

Resultado Esperado:

- Usuario permanece na pagina de login

- Mensagem de erro é exibida: "Email ou senha incorretos"
- Campo de senha é limpo

- Campo de email mantém o valor digitado

Resultado Atual:

- v/ Usuario permanece na pagina de login
- v/ Mensagem de erro exibida

- v/ Campo de senha limpo

- v/ Campo de email mantém valor

Status: PASS
Data de Execucdo: 2025-03-01
Testador: Jodo Silva

CASO DE TESTE TC-003
Titulo: Login com senha invalida

ID: TC-003
Prioridade: Alta
Moédulo: Autenticacao

Pré-condicdes:
- Usuario nédo esta logado
- Conta "user@example.com" existe no sistema

- Senha correta é "senhal23"

Passos:

1. Abrir navegador e acessar https://example.com/login
2. Digitar "user@example.com" no campo de email

3. Digitar "senhaerrada" no campo de senha

4. Clicar no botdo "Login"

Dados de Entrada:
- Email: user@example.com
- Senha: senhaerrada

Resultado Esperado:

- Usuario permanece na pagina de login

- Mensagem de erro é exibida: "Email ou senha incorretos"
- Campo de senha é limpo

- Campo de email mantém o valor digitado

Resultado Atual:

- v/ Usuario permanece na pagina de login
- v/ Mensagem de erro exibida

- v/ Campo de senha limpo

- v Campo de email mantém valor

Status: PASS
Data de Execucdo: 2025-03-01
Testador: Jodao Silva

PARTE I1l: FERRAMENTAS E AUTOMACAO
DE TESTES

Capitulo 6: Jira - Gestdo de Testes e Defeitos

0 Jira é a ferramenta mais popular para rastreamento de issues, gestdo de projetos e
organizacdo de testes em ambientes ageis.

6.1. Configuracao e Tipos de Issues

Tipos de Issues Essenciais para QA

Tipo de e
> Descricao Exemplo
Issue
Defeito encontrado durante € e - . -
Bug Botdo de login ndo funciona em Safari
testes
Stor Requisito de negdcio a ser “Como usuario, quero fazer login com
y desenvolvido email e senha”
Task Tarefa técnica ou administrativa “Configurar ambiente de staging”
Caso de teste (com plugin Xray ou . : T
Test Case (Pg y “Validar login com credenciais validas
Zephyr)
Sub-task Subtarefa de uma issue maior “Escrever testes de unidade para login”
. Conjunto grande de B . o
Epic Implementar sistema de autenticacao

funcionalidades

Campos Importantes para QA

Campo

Summary

Description

Priority
Severity
Assignee
Reporter
Status
Component
Labels

Fix Version

Environment

Descricao

Titulo daissue

Descri¢cdo detalhada

Prioridade da issue
Impacto do defeito
Pessoa responsavel
Pessoa que reportou
Estado atual

Médulo afetado
Tags adicionais
Versdo que corrige

Onde o defeito foi
encontrado

6.2. Workflow de Defeitos

Um workflow define os estados pelos quais uma issue passa durante seu ciclo de

vida.

Workflow Tipico para Bugs:

Valores Tipicos
“Login ndo funciona em Safari”

“Passos para reproduzir, resultado esperado
vs. atual”

Blocker, Critical, High, Medium, Low
Critical, Major, Minor, Trivial

Nome do desenvolvedor ou QA
Nome do QA que encontrou o defeito
To Do, In Progress, In Test, Done
Login, Carrinho, Pagamento
regression, security, performance

v2.0,v2.1

Chrome 120, Windows 10, Staging

| Aberto | (QA encontrou o bug)

v
| |
| Atribuido | (Atribuido a um desenvolvedor)
L |]

v
| |
| Em Progresso | (Desenvolvedor esta corrigindo)
| |

I

v
| |
| Em Teste | (QA estad testando a correcdo)

I
|
— N&o Passa —

v

| |
| Reabertura

| Fechado | (Correcédo validada)
L |

Transi¢oes e Regras:

De

Aberto
Atribuido

Em Progresso
Em Teste

Em Teste

Reabertura

Para
Atribuido

Em Progresso
Em Teste
Fechado
Reabertura

Em Progresso

Quem
QA/Gerente
Desenvolvedor
Desenvolvedor
QA

QA

Desenvolvedor

6.3. Dashboards e Relatorios

Dashboard de Qualidade

Um dashboard tipico para QA mostra:

Métricas Principais:

Condicao

Bug é valido e tem impacto
Desenvolvedor comega a trabalhar
Correcdo esta pronta para teste

Correcao foi validada

Correcao nao funciona ou causa regressao

Desenvolvedor continua trabalhando

e Total de Bugs: 45 (10 Criticos, 15 Altos, 20 Médios)

e Taxa de Resolucao: 80% (36 de 45 bugs corrigidos)

e Tempo Médio de Resolugdo: 3 dias

e Bugs Abertos por Prioridade: Grafico de pizza

e Bugs por Mddulo: Grafico de barras

e Tendéncia de Bugs: Grafico de linha

Relatorio de Teste

Um relatdrio de teste tipico inclui:

RELATORIO DE TESTE - Sprint 15

Resumo Executivo

- **Periodo**: 01-15 de marc¢o de 2025

- **M6édulos Testados**: Login, Carrinho, Pagamento
- **Total de Casos de Teste**: 150

- **Casos Executados**: 145 (96.7%)

- **Taxa de Sucesso**: 92% (133 de 145)

- **Bugs Encontrados**: 12 (8 Criticos, 4 Altos)

Detalhes por Médulo

Login

- Casos de Teste: 40

- Executados: 40

- Passaram: 38

- Falharam: 2

- Taxa de Sucesso: 95%
- Bugs Criticos: 1

Carrinho

- Casos de Teste: 60

- Executados: 60

- Passaram: 56

- Falharam: 4

- Taxa de Sucesso: 93%
- Bugs Criticos: 3

Pagamento

- Casos de Teste: 50

- Executados: 45

- Passaram: 39

- Falharam: 6

- Taxa de Sucesso: 87%
- Bugs Criticos: 4

Bugs Encontrados

ID | Titulo | Prioridade | Status |

e e e BT |

BUG-001 | Login ndo funciona em Safari | Critica | Fechado |
BUG-002 |

BUG-003 | Cupom de desconto ndo aplica | Alta | Em Progresso |
BUG-004 |

Carrinho ndo persiste apés logout | Critica | Em Teste |

Pagamento falha com cartdo de crédito | Critica | Fechado |

Recomendacdes

Aumentar cobertura de testes para o modulo de Pagamento
Implementar testes de regressdo automatizados
Melhorar testes de compatibilidade com navegadores

A W N B

Realizar teste de carga antes da proxima release
Assinado por

QA Lead: Joao Silva
Data: 2025-03-15

6.4. Integracao com Ferramentas de Teste

O Jira pode ser integrado com ferramentas de automacao para criar
automaticamente quando testes falham.

Exemplo de Integracao Cypress + Jira:

issues

// cypress/plugins/index.js
const axios = require('axios');

module.exports = (on, config) => {
on('task', {
createJiraIssue(data) {
const jiraUrl = 'https://seu-jira.atlassian.net/rest/api/3/issue’;
const auth = Buffer.from('seu-email@example.com:seu-token-
api').toString('base64');

return axios.post(jiraurl, {
fields: {

project: { key: 'QA' },
summary: data.title,
description: data.description,
issuetype: { name: 'Bug' },
priority: { name: 'High' },
labels: ['cypress', 'automated']

}
b Ao
headers: {
'Authorization': “Basic ${auth}’,
'Content-Type': 'application/json'
}
1);
}
1)

i

// cypress/e2e/login.cy.js
describe('Login Tests', () => {
it('Should create Jira issue on failure', () => {
cy.visit('https://example.com/login');
cy.get('input[name="email"]').type('user@example.com');
cy.get('input[name="password"]"').type('senhal23');
cy.get('button[type="submit"]"').click();

cy.url().then(url => {
if ('url.includes('/dashboard')) {
cy.task('createJdiraIssue', {
title: 'Login test failed',
description: 'Login button did not redirect to dashboard'

1)

1)

)
1

Capitulo 7: JavaScript e Cypress - Automacao Web
Moderna

7.1. Fundamentos de JavaScript para QA

JavaScript é a linguagem de programacdo da web e é essencial para automagdo com
Cypress.

Conceitos Basicos

Variaveis e Tipos de Dados:

// Variaveis

let email = 'user@example.com'; // let (recomendado)
const password = 'senhal23'; // const (imutdvel)
var username = 'Jodo'; // var (evitar)

// Tipos de dados

let numero = 42; // Number
let texto = 'Hello'; // String
let booleano = true; // Boolean
let nulo = null; // Null

let indefinido; // Undefined
let objeto = { name: 'Jodo' }; // Object
let array = [1, 2, 3]; // Array

Operadores:

// Aritméticos
10 + 5; // 15

10 - 5; // 5

10 * 5; // 50

10 / 5; // 2

10 % 3; // 1 (resto da diviséo)

// Comparacao

5 == '5"', // true (comparacédo de valor)
5 === '5'; // false (comparacdo de tipo e valor)
5 1= '5"', // false

5 == '5"'; // true

5> 3; // true

5 < 3; // false

5 >= 5; // true

5 <= 5; // true

// Lbgicos

true && false; // false (AND)
true || false; // true (OR)
Itrue; // false (NOT)

Estruturas de Controle:

// if/else

if (idade >= 18) {
console.log('Maior de idade');

} else if (idade >= 13) {
console.log('Adolescente');

} else {
console.log('Crianca');

// switch
switch (dia) {
case 'segunda':
console.log('Inicio da semana');
break;
case 'sexta':
console.log('Quase fim de semana');

break;
default:
console.log('Dia comum');
}
// for

for (let i = 0; i <5; i++) {
console.log(i); // 0, 1, 2, 3, 4

// while

let contador = 0;

while (contador < 5) {
console.log(contador);
contador++;

// forEach

const numeros = [1, 2, 3];

numeros.forEach(num => {
console.log(num);

1)

Funcoes:

// Funcdo basica

function saudacao(nome) {
return "0l1a, ${nome}!";

}

console.log(saudacao('Jodo')); // "0la, Joao!"

// Arrow function (moderna)
const saudacao2 = (nome) => {
return "0la, ${nome}!";

i

// Arrow function (simplificada)
const saudacao3 = nome => "0134, ${nome}!";

// Funcdo com multiplos parametros
function calcular(a, b, operacao) {

if (operacao === '+') return a + b;
if (operacao === '-') return a - b;
if (operacao === '*') return a * b;
if (operacao === '/') return a / b;

}
console.log(calcular(10, 5, '+')); // 15

Objetos e Arrays:

// Objeto
const usuario = {
nome: 'Joao',
email: 'joao@example.com',
idade: 30,
endereco: {
rua: 'Rua A',
cidade: 'Sao Paulo'
}
+s

// Acessando propriedades

console.log(usuario.nome); // "Joao"
console.log(usuario['email']); // "joao@example.com"
console.log(usuario.endereco.cidade); // "Sao Paulo"

// Array

const numeros = [1, 2, 3, 4, 5];

console.log(numeros[0]); // 1

console.log(numeros.length); // 5

// Métodos de Array

numeros.push(6); // [1, 2, 3, 4, 5, 6]
numeros.pop(); // [1, 2, 3, 4, 5]
numeros.map(n => n * 2); // [2, 4, 6, 8, 10]
numeros.filter(n =>n > 2); // [3, 4, 5]

7.2. Introducao ao Cypress
O que é Cypress?

Cypress é um framework de teste end-to-end (E2E) moderno, desenvolvido
especificamente para testes de aplicacGes web. Ele oferece uma experiéncia de teste
superior com:

e Execucdo rapida e confiavel

e Interface visual intuitiva

e Debugging facil

e Documentacgao excelente

Instalacao:

Criar projeto Node.js
npm init -y

Instalar Cypress
npm install --save-dev cypress

Abrir Cypress
npx cypress open

Estrutura de Projeto:

projeto/

— cypress/

| F— e2e/ # Testes E2E
| | L— login.cy.js
| — support/ # Arquivos de suporte
| | F— commands.js
| | L— e2e.js

| L— fixtures/ # Dados de teste

| L— users.json

— cypress.config.js # Configuracdo do Cypress
L— package.json

7.3. Seletores e Localizadores

Seletores CSS:

// Por ID
cy.get('#login-button')

// Por classe
cy.get('.error-message')

// Por atributo
cy.get('input[type="email"]")
cy.get('button[data-testid="submit"]")

// Por tag
cy.get('button')

// Combinacdes
cy.get('form input[type="email"]")
cy.get('.container > .button')

Seletores XPath:

// XPath (menos recomendado, mas possivel)
cy.xpath('//button[@id="1ogin-button"]")
cy.xpath('//input[@type="email"]")
cy.xpath('//div[contains(text(), "Error")]')

Melhores Praticas:
// v BOM: Usar data-testid
cy.get('[data-testid="email-input"]"').type('user@example.com');

// x RUIM: Usar seletores frageis
cy.get('input:nth-child(2)').type('user@example.com');

// v/ BOM: Usar get com texto
cy.contains('button', 'Login').click();

// x RUIM: Usar seletores muito especificos
cy.get('body > div:nth-child(1) > form > input:nth-child(2)'");

7.4. Exemplos de Scripts Cypress

Exemplo 1: Teste de Login

// cypress/e2e/login.cy.js
describe('Login Tests', () => {
beforekEach(() => {
cy.visit('https://example.com/login');
1)

it('Should login successfully with valid credentials', () => {
cy.get('[data-testid="email-input"]")
.type('user@example.com');

cy.get('[data-testid="password-input"]")
.type('senha123');

cy.get('[data-testid="login-button"]")
.click();

cy.url().should('include', '/dashboard');
cy.get('[data-testid="user-name"]")
.should('contain', 'Jodo Silva');

1)

it('Should show error with invalid email', () => {
cy.get('[data-testid="email-input"]")
.type('invalido@example.com');

cy.get('[data-testid="password-input"]")
.type('senhal123');

cy.get('[data-testid="1login-button"]")
.click();

cy.get('[data-testid="error-message"]"')
.should('contain', 'Email ou senha incorretos');

1)

it('Should show error with invalid password', () => {
cy.get('[data-testid="email-input"]")
.type('user@example.com');

cy.get('[data-testid="password-input"]")
.type('senhaerrada');

cy.get('[data-testid="login-button"]")
.click();

cy.get('[data-testid="error-message"]"')
.should('contain', 'Email ou senha incorretos');

1)

it('Should require email field', () => {
cy.get('[data-testid="password-input"]")
.type('senhal123');

cy.get('[data-testid="1login-button"]")
.click();

cy.get('[data-testid="email-error"]")
.should('contain', 'Email é obrigatorio');
1)
});

Exemplo 2: Teste de Carrinho de Compras

// cypress/e2e/shopping-cart.cy.js
describe('Shopping Cart Tests', () => {
beforekEach(() => {
cy.visit('https://example.com');
cy.login('user@example.com', 'senhal23');

1)

it('Should add item to cart', () => {
cy.get('[data-testid="product-1"]")
.click();

cy.get('[data-testid="add-to-cart-button"]"')
.click();

cy.get('[data-testid="cart-count"]")
.should('contain', '1');

cy.get('[data-testid="success-message"]"')
.should('contain', 'Produto adicionado ao carrinho');

1)

it('Should remove item from cart', () => {
// Adicionar item
cy.get('[data-testid="product-1"]").click();
cy.get('[data-testid="add-to-cart-button"]"').click();

// Ir para carrinho
cy.get('[data-testid="cart-1ink"]").click();

// Remover item
cy.get('[data-testid="remove-button"]").click();

cy.get('[data-testid="empty-cart-message"]"')
.should('contain', 'Seu carrinho estéa vazio');

1)

it('Should apply discount coupon', () => {
// Adicionar item
cy.get('[data-testid="product-1"]").click();
cy.get('[data-testid="add-to-cart-button"]"').click();

// Ir para carrinho
cy.get('[data-testid="cart-1ink"]").click();

// Aplicar cupom

cy

cy.

cy.

//

cy.

1)

.get('[data-testid="coupon-input"]")
.type('DESCONTO010"');

get('[data-testid="apply-coupon-button"]")
.click();

get('[data-testid="discount-message"]")
.should('contain', '10% de desconto aplicado');

Verificar que o total foi reduzido
get('[data-testid="total-price"]")
.should('contain', 'R$ 90,00'");

it('Should update item quantity', () => {

//
cy

cy.

//

cy.

//

cy.

cy.

cy.

)
1

Adicionar item
.get('[data-testid="product-1"]"').click();
get('[data-testid="add-to-cart-button"]"').click();

Ir para carrinho
get('[data-testid="cart-1ink"]").click();

Aumentar quantidade
get('[data-testid="quantity-input"]")
.clear()

.type('3");

get('[data-testid="update-button"]")
.click();

get('[data-testid="total-price"]")
.should('contain', 'R$ 300,00');

Exemplo 3: Teste com Dados Dinamicos

// cypress/fixtures/users.json

[
{
"email": "userl@example.com",
"password": "senhal23",
"name": "Usuario 1"
+
{
"email": "user2@example.com",
"password": "senha456",
"name": "Usuario 2"
}
]

// cypress/e2e/dynamic-tests.cy.js
describe('Dynamic Login Tests', () => {
beforetEach(() => {
cy.fixture('users').as('users');

)

it('Should login with multiple users', function() {
this.users.forEach(user => {
cy.visit('https://example.com/login');

cy.get('[data-testid="email-input"]")
.type(user.email);

cy.get('[data-testid="password-input"]")
.type(user.password);

cy.get('[data-testid="1login-button"]")
.click();

cy.url().should('include', '/dashboard');
cy.get('[data-testid="user-name"]")
.should('contain', user.name);

// Logout
cy.get('[data-testid="1logout-button"]")
.click();
});
1)
1);

7.5. Boas Praticas e Padroes
Page Object Model (POM):

O Page Object Model é um padrao de design que melhora a manutenibilidade dos
testes.

// cypress/support/pages/LoginPage.js
class LoginPage {
visit() {
cy.visit('https://example.com/login');

fillEmail(email) {
cy.get('[data-testid="email-input"]').type(email);
return this;

fillPassword(password) {
cy.get('[data-testid="password-input"]').type(password);
return this;

clickLoginButton() {
cy.get('[data-testid="1login-button"]"').click();
return this;

getErrorMessage() {
return cy.get('[data-testid="error-message"]');

login(email, password) {
this.fillEmail(email);
this.fillPassword(password);
this.clickLoginButton();
return this;

export default new LoginPage();

// cypress/e2e/login-pom.cy.js
import LoginPage from '../support/pages/LoginPage’;

describe('Login Tests with POM', () => {
beforeEach(() => {
LoginPage.visit();

1)

it('Should login successfully', () => {
LoginPage.login('user@example.com', 'senhal23');

cy.url().should('include', '/dashboard');
1)

it('Should show error with invalid credentials', () => {
LoginPage.login('invalid@example.com', 'wrongpassword');
LoginPage.getErrorMessage()
.should('contain', 'Email ou senha incorretos');
1)
1)

Custom Commands:

// cypress/support/commands.js

Cypress.Commands.add('login', (email, password) => {
cy.visit('https://example.com/login');
cy.get('[data-testid="email-input"]').type(email);
cy.get('[data-testid="password-input"]").type(password);
cy.get('[data-testid="1login-button"]"').click();
cy.url().should('include', '/dashboard');

1);

Cypress.Commands.add('logout', () => {
cy.get('[data-testid="1logout-button"]"').click();
cy.url().should('include', '/login');

1);

// Uso nos testes
describe('Tests with Custom Commands', () => {
it('Should use custom login command', () => {
cy.login('user@example.com', 'senhal23');
cy.get('[data-testid="user-name"]"').should('be.visible"');

1)

it('Should use custom logout command', () => {
cy.login('user@example.com', 'senhal23');
cy.logout();
1)
1);

Capitulo 8: Python e Robot Framework - Automacao
Versatil

8.1. Fundamentos de Python para QA

Python é uma linguagem poderosa e versatil para automacao de testes.

Conceitos Basicos

Variaveis e Tipos de Dados:

Variaveis

email = 'user@example.com'
password = 'senhal23'
idade = 30

altura = 1.75
ativo = True

Tipos de dados

type(email) # <class 'str'>
type(idade) # <class 'int'>
type(altura) # <class 'float'>
type(ativo) # <class 'bool'>

Conversao de tipos

str(idade) # '30'
int('30") # 30

float('1.75") # 1.75
bool(1) # True

Strings:

Concatenacéo

nome = 'Jodo'
sobrenome = 'Silva'
nome_completo = nome + ' ' + sobrenome

f-strings (recomendado)
mensagem = f'0la, {nome}!'’
print(mensagem) # '0la, Joao!'

Métodos de string
texto = 'Hello World'

texto.lower() # 'hello world'
texto.upper() # 'HELLO WORLD'
texto.replace('World', 'Python') # 'Hello Python'
texto.split() # ['Hello', 'World']

Listas:
Criacao

numeros = [1, 2, 3, 4, 5]
nomes = ['Jodo', 'Maria', 'Pedro']

Acesso

numeros[0] # 1

numeros[-1] # 5 (4ltimo elemento)
numeros[1:3] # [2, 3] (slice)

Métodos

numeros.append(6) # [1, 2, 3, 4, 5, 6]
numeros.remove(3) # [1, 2, 4, 5, 6]
len(numeros) # 5

Dicionarios:

Criacao
usuario = {

"'nome': 'Joé&o',
'email': 'joao@example.com',
'idade': 30

}

Acesso

usuario['nome'] # 'Joao’

usuario.get('email') # 'joao@example.com'

Adicao
usuario['telefone'] = '123456789'

Iteracéo

for chave, valor in usuario.items():
print(f'{chave}: {valor}'")

Estruturas de Controle:

if/elif/else
idade = 20
if idade >= 18:
print('Maior de idade')
elif idade >= 13:
print('Adolescente')
else:
print('Crianca')

for
for i in range(5):
print(i) # 0, 1, 2, 3, 4

while

contador = 0

while contador < 5:
print(contador)
contador += 1

List comprehension

numeros = [1, 2, 3, 4, 5]

pares = [n for n in numeros if n % 2 == 0]
print(pares) # [2, 4]

Funcoes:

Funcdo basica
def saudacao(nome):
return f'0la, {nome}!'’

print(saudacao('Jodo')) # 'Ola, Joao!'

Funcdo com multiplos paréametros
def calcular(a, b, operacao='+"):
if operacao == '+':
return a + b
elif operacao == '-':
return a - b
elif operacao == '*':
return a * b
elif operacao == '/':
return a / b

print(calcular(10, 5)) # 15
print(calcular(10, 5, '-')) # 5

Funcdo com *args e **kwargs
def funcao_flexivel(*args, **kwargs):

print(args) # tupla de argumentos

print(kwargs) # dicionario de argumentos nomeados
funcao_flexivel(1l, 2, 3, nome='Jodo',6 idade=30)

(1, 2, 3)
{'nome': 'Jodo', 'idade': 30}

8.2. Introduc¢ao ao Robot Framework
O que é Robot Framework?

Robot Framework é um framework de automacdo de testes genérico e extensivel,
baseado em Python, que usa uma sintaxe simples e legivel em linguagem natural.

Instalacao:

Instalar Robot Framework
pip install robotframework

Instalar SeleniumLibrary (para testes web)
pip install robotframework-seleniumlibrary

Instalar RequestsLibrary (para testes de API)
pip install robotframework-requestslibrary

Instalar DatabaselLibrary (para testes de banco de dados)
pip install robotframework-databaselibrary

Estrutura de Projeto:

projeto/

— tests/

| F— login.robot

| — carrinho.robot
| L— pagamento.robot
— resources/

| — keywords.robot
| L— variables.robot
— results/

| F— report.html
| F— log.html

| L— output.xml
L— robot.ini

8.3. Bibliotecas Essenciais

Biblioteca Uso

SeleniumLibrary Automacdo de testes web
RequestsLibrary Testes de API REST
DatabaseLibrary Testes de banco de dados
Builtin Fungdes nativas
Manipulacao de listas e

Collections C .
dicionarios

String Manipulagao de strings

Exemplo

Open Browser , Click Button, Input

Text

GET, POST, PUT, DELETE

Connect To Database, Query,

Execute SQL

Log, Sleep, Should Be Equal

Append To List, Get From

Dictionary

Get Substring, Replace String

8.4. Exemplos de Scripts Robot Framework

Exemplo 1: Teste de Login

*¥** Settings ***
Library SeleniumLibrary

*** Variables ***

${BROWSER} Chrome

${URL} https://example.com/login
${EMAIL} user@example.com
${PASSWORD} senhal23

${EMAIL_INPUT} [data-testid="email-input"]

${PASSWORD_INPUT} [data-testid="password-input"]
${LOGIN_BUTTON} [data-testid="1login-button"]

*** Test Cases ***
Test Login With Valid Credentials
Open Browser ${URL} ${BROWSER}

Input Text ${EMAIL_INPUT} ${EMAIL}

Input Text ${PASSWORD_INPUT} ${PASSWORD}
Click Button ${LOGIN_BUTTON}

Location Should Contain /dashboard

Close Browser

Test Login With Invalid Email
Open Browser ${URL} ${BROWSER}

Input Text ${EMAIL_INPUT} invalid@example.com
Input Text ${PASSWORD_INPUT} ${PASSWORD}
Click Button ${LOGIN_BUTTON}

Page Should Contain Email ou senha incorretos

Close Browser

Test Login With Invalid Password
Open Browser ${URL} ${BROWSER}

Input Text ${EMAIL_INPUT} ${EMAIL}

Input Text ${PASSWORD_INPUT} wrongpassword
Click Button ${LOGIN_BUTTON}

Page Should Contain Email ou senha incorretos

Close Browser

*** Keywords ***
Login With Credentials
[Arguments] ${email} ${password}
Open Browser ${URL} ${BROWSER}
Input Text ${EMAIL_INPUT} ${email}
Input Text ${PASSWORD_INPUT} ${password}
Click Button ${LOGIN_BUTTON}

Exemplo 2: Teste de APl com RequestsLibrary

*** Settings ***
Library RequestsLibrary
Library Collections

*** Variables ***

${BASE_URL} https://api.example.com
${USER_EMAIL} user@example.com
${USER_PASSWORD} senhal23

*** Test Cases ***

Test Get Users

${response}= GET ${BASE_URL}/users
Should Be Equal As Integers ${response.status_code}
Should Contain ${response.text} user@example.com

Test Create User
${data}= Create Dictionary
email=newuser@example.com
password=senhal23
name=New User

${response}= POST ${BASE_URL}/users
json=${data}

Should Be Equal As Integers ${response.status_code}

Should Contain ${response.text} newuser@example.com

Test Update User
${data}= Create Dictionary
name=Updated Name

${response}= PUT ${BASE_URL}/users/1
json=${data}

Should Be Equal As Integers ${response.status_code}

Test Delete User
${response}= DELETE ${BASE_URL}/users/1
Should Be Equal As Integers ${response.status_code}

Test Login API
${data}= Create Dictionary
email=${USER_EMAIL}
password=${USER_PASSWORD}

${response}= POST ${BASE_URL}/1login

200

201

200

204

json=${data}

Should Be Equal As Integers ${response.status_code} 200
Should Contain ${response.text} token

8.5. Integracao com CI/CD
Executar Robot Framework em CI/CD:
Executar todos os testes
robot tests/

Executar teste especifico
robot tests/login.robot

Executar com tags
robot --include smoke tests/

Gerar relatorio
robot --outputdir results tests/

Exemplo com GitHub Actions:

.github/workflows/robot-tests.yml

name:

Robot Framework Tests

on: [push, pull request]

jobs:

test:

runs-on: ubuntu-latest

steps:

uses: actions/checkout@v2

name: Set up Python
uses: actions/setup-python@v2
with:

python-version: 3.9

name: Install dependencies

run: |
pip install robotframework
pip install robotframework-seleniumlibrary
pip install robotframework-requestslibrary

name: Run Robot Framework tests
run: robot --outputdir results tests/

name: Upload results
if: always()
uses: actions/upload-artifact@v2
with:
name: robot-results
path: results/

Capitulo 9: Testes de API - A Espinha Dorsal do
Software

9.1. Fundamentos de REST e HTTP

O que é REST?

REST (Representational State Transfer) € um estilo arquitetural para projetar
aplicacBes de rede. Ele usa HTTP como protocolo de comunicagdo e é baseado em

recursos.

Conceitos Principais:

9.2. Métodos HTTP e Codigos de Status

Métodos HTTP:
Método Descri¢do
GET Recuperar dados
POST Criar novo recurso
PUT Atualizar recurso existente
PATCH Atualizacao parcial

DELETE Deletar recurso
HEAD Como GET, mas sem corpo

OPTIONS Descrever opgdes de comunicagao

Codigos de Status HTTP:

Métodos HTTP: Acdes que podem ser realizadas nos recursos

Representagdes: Formato dos dados (JSON, XML)

Exemplo

GET /users/1
POST /users
PUT /users/1
PATCH /users/1
DELETE /users/1
HEAD /users

OPTIONS /users

Recursos: Entidades que podem ser manipuladas (usuarios, produtos, pedidos)

Stateless: Cada requisicdo contém todas as informacGes necessarias

Idempotente

Sim

Sim
Sim

Sim

Codigo Categoria

200

201

204

400

401

403

404

500

503

2xX (Sucesso)

2xX (Sucesso)

2xx (Sucesso)

4xx (Erro do
Cliente)

4xx (Erro do
Cliente)

4xx (Erro do
Cliente)

4xx (Erro do
Cliente)

5xx (Erro do
Servidor)

5xx (Erro do
Servidor)

Significado
OK - Requisicao bem-sucedida
Created - Recurso criado

No Content - Sem corpo na
resposta

Bad Request - Requisicao
invalida

Unauthorized - Autenticacao
necessaria

Forbidden - Acesso negado

Not Found - Recurso nao
encontrado

Internal Server Error

Service Unavailable

9.3. Postman - Testes de APl Manuais

O que é Postman?

Exemplo
GET /users retorna 200
POST /users retorna 201

DELETE /users/1 retorna
204

POST /users com dados
invalidos

GET /users sem token

GET /admin sem permissao

GET /users/999

Erro no servidor

Servidor em manutencao

Postman é uma ferramenta popular para testar, documentar e monitorar APIs. Permite

criar requisicoes HTTP de forma visual e organizar testes em colecdes.

Instalacao:

1. Baixar em https://www.postman.com/downloads/

2. Criar conta gratuita

3. Abrir aplicacao

Estrutura Basica:

https://www.postman.com/downloads/

Workspace
— Collections
— User API
| — GET /users
| F— POST /users
| F— PUT /users/:id
| L — DELETE /users/:id
L— Product API
F— GET /products
L— POST /products
L— Environments
— Development
— Staging
L— Production

Exemplo de Requisi¢ao GET:

GET https://api.example.com/users/1

Headers:
Authorization: Bearer token123
Content-Type: application/json

Response:

{
"id": 1,
"name": "Jodo Silva",
"email": "joao@example.com",
"age": 30

}

Exemplo de Requisi¢ao POST:

POST https://api.example.com/users

Headers:
Content-Type: application/json

Body:

{
"name": "Maria Silva",
"email": "maria@example.com",
"age": 28

}

Response:

{
"id": 2,
"name": "Maria Silva",
"email": "maria@example.com",
"age": 28,

"createdAt": "2025-03-01T10:00:00Z"

9.4. Automacao de Testes de API

Exemplo com Python e Requests:

import requests
import json

URL base da API
BASE_URL = 'https://api.example.com'

Headers

HEADERS = {
'"Content-Type': 'application/json',
"Authorization': 'Bearer token123'

Teste GET
def test_get_user():
response = requests.get(f'{BASE_URL}/users/1', headers=HEADERS)

assert response.status_code == 200
data = response.json()
assert data['id'] == 1
assert data['name'] == 'Jodo Silva'

print('v GET /users/1 passou')

Teste POST
def test_create_user():

payload = {
'name': 'Maria Silva',
'email': 'maria@example.com',
'age': 28

}

response = requests.post(f'{BASE_URL}/users', json=payload,
headers=HEADERS)

assert response.status_code == 201

data = response.json()

assert data['name'] == 'Maria Silva'

print('v POST /users passou')

Teste PUT
def test_update_user():
payload = {
'name': 'Jo8o Silva Atualizado'
}

response = requests.put(f'{BASE_URL}/users/1', json=payload,
headers=HEADERS)

assert response.status_code == 200

data = response.json()

assert data['name'] == 'Jo&o Silva Atualizado'

print('v PUT /users/1 passou')

Teste DELETE

def test_delete_user():
response = requests.delete(f'{BASE_URL}/users/1', headers=HEADERS)
assert response.status_code == 204
print('v DELETE /users/1 passou')

Executar testes
if __name__ == '__main__":
test_get_user()
test_create_user()
test_update_user ()
test_delete_user()
print('\nv Todos os testes passaram!')

Exemplo com Cypress:

// cypress/e2e/api-tests.cy.js
describe('API Tests', () => {

const BASE_URL = 'https://api.example.com';

it('Should GET user successfully', () => {
cy.request('GET', “${BASE_URL}/users/1")
.then(response => {
expect(response.status).to.equal(200);
expect(response.body).to.have.property('id',

1)
13K

it('Should POST user successfully', () => {
const payload = {
name: 'Maria Silva',
email: 'maria@example.com',
age: 28
}i

cy.request('POST', "${BASE_URL}/users’, payload)
.then(response => {
expect(response.status).to.equal(201);

expect(response.body).to.have.property('name',

1)
)

it('Should PUT user successfully', () => {
const payload = {
name: 'Jodo Silva Atualizado'

}

cy.request('PUT', "${BASE_URL}/users/1°, payload)
.then(response => {

expect(response.status).to.equal(200);

expect(response.body).to.have.property('name',

Atualizado');
3);
1)

it('Should DELETE user successfully', () => {
cy.request('DELETE', “${BASE_URL}/users/17)
.then(response => {

expect(response.status).to.equal(204);

1)

1);
expect(response.body).to.have.property('name',

'Jodo Silva');

'"Maria Silva');

'Jodo Silva

)
1)

9.5. Validacao de Respostas JSON

Estrutura JSON:

"id": 1,

"name": "Jodo Silva",

"email": "joao@example.com",

"age": 30,

"ativo": true,

"endereco": {
"rua": "Rua A",
"cidade": "Sdo Paulo",
"cep": "01234-567"

}

"telefones": [
"11987654321",
"1133334444"

Validacao em Python:

import requests
import json

response = requests.get('https://api.example.com/users/1"')
data = response.json()

Validar estrutura
assert 'id' in data
assert 'name' in data
assert 'email' in data

Validar tipos

assert isinstance(data['id'], int)
assert isinstance(data['name'], str)
assert isinstance(data['ativo'], bool)

Validar valores

assert data['id'] == 1

assert data['name'] == 'Jodo Silva'
assert data['age'] > 0

Validar objetos aninhados
assert data['endereco']['cidade'] == 'S&o Paulo'

Validar arrays
assert len(data['telefones']) ==

assert '11987654321' in data['telefones']

print('v Todas as validacdes passaram!')

Validagao em Cypress:

cy.request('GET', 'https://api.example.com/users/1")
.then(response => {
// Validar status
expect(response.status).to.equal(200);

// Validar estrutura
expect(response.body).to.have.property('id');
expect(response.body).to.have.property('name');
expect(response.body).to.have.property('email');

// Validar tipos
expect(response.body.id).to.be.a('number');
expect(response.body.name).to.be.a('string');
expect(response.body.ativo).to.be.a('boolean');

// Validar valores
expect(response.body.id).to.equal(1);
expect(response.body.name).to.equal('Jodo Silva');
expect(response.body.age).to.be.greaterThan(0);

// Validar objetos aninhados
expect(response.body.endereco.cidade).to.equal('Sdo Paulo');

// Validar arrays

expect(response.body.telefones).to.have.length(2);

expect(response.body.telefones).to.include('11987654321");
1)

Capitulo 10: Bash, Linux e Terminal - Ambiente do QA

10.1. Comandos Essenciais de Terminal

Navegacdo de Diretorios:

Mostrar diretdrio atual
pwd

Listar arquivos

1s
1s -la # Com detalhes
1s -1h # Com tamanho legivel

Mudar de diretodrio
cd /home/ubuntu

cd .. # Diretorio pai
cd ~ # Home directory
cd - # Diretdério anterior

Criar diretoério
mkdir projeto
mkdir -p projeto/src/main # Criar hierarquia

Remover diretério

rmdir projeto # Vazio
rm -rf projeto # Com conteudo

Manipulacao de Arquivos:

Criar arquivo vazio
touch arquivo.txt

Copiar arquivo
cp arquivo.txt coépia.txt
cp -r pasta/ copia_pasta/ # Recursivo

Mover/renomear
mv arquivo.txt novo_nome.txt
mv arquivo.txt /caminho/destino/

Remover arquivo
rm arquivo.txt
rm -f arquivo.txt # Forcar

Visualizar conteudo

cat arquivo.txt # Mostrar tudo

head -n 10 arquivo.txt # Primeiras 10 linhas
tail -n 10 arquivo.txt # Ultimas 10 linhas
less arquivo.txt # Paginado (q para sair)

10.2. Analise de Logs

Comandos Essenciais:

Monitorar log em tempo real
tail -f /var/log/application.log

Buscar padrdo em arquivo
grep "ERROR" /var/log/application.log

Contar ocorréncias
grep -c "ERROR" /var/log/application.log

Mostrar contexto

grep -A 5 "ERROR" /var/log/application.log # 5 linhas depois

grep -B 5 "ERROR" /var/log/application.log # 5 linhas antes

grep -C 5 "ERROR" /var/log/application.log # 5 linhas antes e depois

Busca case-insensitive
grep -i "error" /var/log/application.log

Expressao regular
grep "ERROR.*timeout" /var/log/application.log

Multiplos arquivos
grep "ERROR" /var/log/*.log

Inverter busca (n&do contém)
grep -v "INFO" /var/log/application.log

Exemplo Pratico:
Encontrar todos os erros no ultimo dia
tail -f /var/log/app.log | grep "ERROR"

Contar erros por tipo
grep "ERROR" /var/log/app.log | grep -o "ERROR.*" | sort | unig -c

Encontrar erros de timeout
grep "ERROR.*timeout" /var/log/app.log | tail -20

Salvar erros em arquivo
grep "ERROR" /var/log/app.log > erros.txt

10.3. Conectividade e Rede

Comandos Essenciais:

Testar conectividade
ping google.com
ping -c 4 google.com # 4 pacotes

Verificar porta aberta
telnet example.com 80
nc -zv example.com 80 # netcat

Fazer requisicdo HTTP

curl https://example.com

curl -X POST https://example.com/api/users \
-H "Content-Type: application/json" \
-d '"{"name":"Joao"}'

Salvar resposta em arquivo
curl https://example.com > resposta.html

Mostrar headers
curl -i https://example.com

Seguir redirecionamentos
curl -L https://example.com

Informacdes de DNS
nslookup example.com

dig example.com

Informagbes de rede

ifconfig # IP local
netstat -an # Conexdes ativas
sSS -an # Alternativa moderna

Exemplo Pratico:

Testar API

curl -X GET https://api.example.com/users/1 \
-H "Authorization: Bearer token123" \
-H "Content-Type: application/json"

Criar usuario via API
curl -X POST https://api.example.com/users \
-H "Content-Type: application/json" \

-d '{
"name": "Jodo Silva",
"email": "joao@example.com"
}l

Verificar se servidor estéa respondendo
curl -s -0 /dev/null -w "%{http_code}" https://example.com

10.4. Automacao com Scripts Bash

Script Basico:

#!/bin/bash

Variaveis
NOME="Joao"
IDADE=30

Imprimir
echo "0l14, $NOME"
echo "Sua idade é: $IDADE"

Condicionais

if [$IDADE -ge 18]; then
echo "Vocé é maior de idade"

else

echo "Vocé é menor de idade"
fi

Loops

for i in {1..5}; do
echo "Numero: $i"

done

FuncOes
function saudacao() {
echo "0la, $1!"

saudacao "Maria"

Script para Testes:

#!/bin/bash
Script para executar testes automaticamente

API_URL="https://api.example.com"
LOG_FILE="test_results.log"

Funcdo para testar endpoint
test_endpoint() {

local method=$1

local endpoint=$2

local expected_code=$3

echo "Testando: $method $endpoint"

response=$(curl -s -o /dev/null -w "%{http_code}" -X $method
"API_URLendpoint")

if ["$response" -eq "$expected_code"]; then
echo "v PASSOU: $method $endpoint (HTTP $response)" >> $LOG_FILE
return 0
else
echo "x FALHOU: $method $endpoint (esperado $expected_code, obteve
$response)" >> $LOG_FILE
return 1
fi

Executar testes

test_endpoint "GET" "/users" 200
test_endpoint "GET" "/users/1" 200
test_endpoint "POST" "/users" 201
test_endpoint "GET" "/users/999" 404

Resumo

EChO nn
echo "Testes concluidos. Verifique $LOG_FILE"

10.5. Gerenciamento de Processos

Comandos Essenciais:

Listar processos
ps aux # Todos 0s processos
ps aux | grep java # Processos Java

Monitorar sistema em tempo real
top
htop # Alternativa mais amigavel

Matar processo
kill 1234 # Sinal TERM
kill -9 1234 # Sinal KILL (forcgado)

Executar em background
./script.sh &

Executar em background com nohup (continua apds logout)
nohup ./script.sh &

Ver jobs em background
jobs

Trazer para foreground
fg %1

Pausar/retomar

Ctrl+z # Pausar
bg # Retomar em background

Exemplo Pratico:
Executar testes em background
nohup npm test > test_results.log 2>&1 &

Monitorar progresso
tail -f test_results.log

Verificar se processo ainda estéd rodando
ps aux | grep npm

Matar processo se necessario
pkill -f "npm test"

PARTE IV: CARREIRAE
DESENVOLVIMENTO PROFISSIONAL

Capitulo 12: Construindo um Portfélio Vencedor

12.1. Componentes Essenciais do Portfolio

Um portfélio profissional de QA deve demonstrar suas habilidades praticas e
conhecimento tedrico.

Componentes Principais:
1. GitHub Repositories

o Projetos de automacdo com cédigo limpo
o README documentado
o Histdrico de commits bem estruturado

o Testes funcionando
2. Documentacao

o Planos de Teste
o Casos de Teste
o Relatérios de Teste

o Estudos de Caso
3. Certificacoes

o |STQB Foundation
o Cypress Certified

o Cursos reconhecidos
4. LinkedIn Profile

o Foto profissional

o Resumo detalhado
o Recomendacdes

o Historico de experiéncia
5. Blog/Medium

o Artigos sobre QA
o Tutoriais de ferramentas

o Compartilhamento de conhecimento

12.2. Projetos de Automacgao

Projeto 1: Automacao Web com Cypress

cypress-ecommerce-tests/
— cypress/

| F— e2e/

| | F— login.cy.js

| | — shopping-cart.cy.js
| | — checkout.cy.js

| | L— payment.cy.js

| — support/

| | — commands.js

| | L— e2e.js

| L— fixtures/

| — users.json

| L— products.json

— cypress.config.js

— README.md

L— package.json

Projeto 2: Automacgao com Robot Framework

robot-api-tests/

I

tests/

— user_api.robot
— product_api.robot
L— order_api.robot
resources/

— keywords.robot
L— variables.robot
results/

F— report.html

F— log.html

L— output.xml
README . md

robot.ini

Projeto 3: Testes de APl com Python

python-api-tests/

T 1T T

|_

L

tests/

— test_users.py
— test_products.py
L— test_orders.py

fixtures/

— users.json
L— products.json
requirements.txt
pytest.ini
README . md
conftest.py

12.3. Documentacao e Estudos de Caso

Estudo de Caso: Teste de E-commerce

Estudo de Caso: Teste de E-commerce

Objetivo
Testar o fluxo completo de compra de um e-commerce, desde o login até o
pagamento.

Escopo

- Login e autenticacdao

- Busca e filtro de produtos
- Adicdo ao carrinho

- Aplicacédo de cupom

- Checkout

- Pagamento

Estratégia
- 70% Automacdo (Cypress)
- 30% Manual (Exploratério)

Resultados

- 150 casos de teste criados
- 145 executados (96.7%)

- 12 bugs encontrados

- Taxa de sucesso: 92%

Bugs Encontrados
Login ndo funciona em Safari (Critico)
Carrinho nédo persiste apds logout (Critico)
Cupom ndo aplica desconto correto (Alta)

Recomendacdes

Implementar testes de compatibilidade com navegadores
2. Aumentar cobertura de testes para médulo de pagamento
3. Automatizar testes de regressao

12.4. GitHub e Versionamento

Estrutura de Repositorio:

projeto-qa/

F— .github/

L— workflows/
L— tests.yml

.gitignore

README . md

cypress/

tests/

docs/

package.json

LICENSE

[TTTTTT

README.md Profissional:

Projeto de Testes Automatizados - E-commerce

Descricao
Suite de testes automatizados para validar funcionalidades criticas de um e-
commerce, incluindo login, carrinho de compras, checkout e pagamento.

Tecnologias

- **Cypress** para testes E2E

- **JavaScript** para scripts

- **GitHub Actions** para CI/CD
- **postman** para testes de API

Instalacao
" “bash
npm install

npx cypress open

Executar Testes

Todos os testes
npm test

Teste especifico

npm test -- --spec cypress/e2e/login.cy.js
Com tags
npm test -- --env tags=smoke

Estrutura de Pastas

e cypress/e2e/ - Testes E2E
® cypress/support/ - Comandos customizados
e cypress/fixtures/ - Dados de teste

® docs/ - Documentacao

Cobertura de Testes

Login: 40 casos

Carrinho: 60 casos

Pagamento: 50 casos

Total: 150 casos

Relatorios

Apos executar os testes, abra cypress/reports/index.html

Contribuindo

1. Fork o projeto

2. Crieuma branch (git checkout -b feature/nova-feature)
3. Commit suas mudancas (git commit -am 'Adiciona nova feature')
4, Push paraabranch (git push origin feature/nova-feature)

5. Abra um Pull Request

Autor

Joao Silva - QA Engineer

Licenca

MIT

Capitulo 13: Curriculo e LinkedIn Profissional
13.1. Estrutura de um Curriculo Vencedor

Formato Recomendado:

JOAO SILVA Sdo Paulo, SP | (11) 98765-4321 | joao.silva@example.com LinkedIn:
linkedin.com/in/joaosilva | GitHub: github.com/joaosilva

RESUMO PROFISSIONAL QA Engineer com 5 anos de experiéncia em automacao de
testes, desenvolvimento de estratégias de qualidade e lideranca de equipes.

Especialista em Cypress, Robot Framework e testes de API. Certificado ISTQB
Foundation.

EXPERIENCIA PROFISSIONAL
QA Engineer Senior - Tech Company (2022 - Presente)

e Liderou equipe de 3 QAs em implementacao de testes automatizados

e Aumentou cobertura de testes de 60% para 85%

® Reduziu tempo de regressao de 2 dias para 4 horas

e |Implementou CI/CD pipeline com GitHub Actions
QA Engineer - E-commerce Company (2020 - 2022)

e Desenvolveu suite de testes com Cypress (150+ casos)
e |Implementou testes de APl com Postman
e Criou planos de teste e documentacao

* Colaborou com desenvolvedores em pair testing
QA Analyst - Startup (2018 - 2020)

e Executou testes manuais e exploratorios
e Reportou e rastreou defeitos no Jira

e Participou de reunides de requisitos

HABILIDADES TECNICAS

Ferramentas: Cypress, Robot Framework, Postman, Jira, Git

Linguagens: JavaScript, Python, Bash

Metodologias: Agil, Scrum, Kanban

Testes: Funcional, Integracao, API, Performance, Seguranca
CERTIFICACOES

e |STQB Foundation (2022)
e Cypress Certified (2023)

EDUCACAO
e Bacharelado em Ciéncia da Computacao - Universidade X (2018)
PROJETOS DESTACADOS

e cypress-ecommerce-tests: Suite com 150+ testes E2E
* robot-api-tests: Automacao de APl com Robot Framework
e python-api-tests: Testes de APl com Python e Pytest

b A

13.2. Palavras-Chave e Competéncias
Palavras-Chave Importantes:

e Cypress

* Robot Framework

e Postman

e Jira

e Automacao de Testes
e Testes de API

* Testes E2E

e JavaScript

e Python

e Bash/Linux

e CI/CD

® GitHub Actions

e Testes de Regressao
e Testes Funcionais

e Testes de Performance
e ISTQB

e Agile/Scrum

13.3. Otimizacao do Perfil LinkedIn
Sec¢oes Importantes:
1. Foto Profissional

o Fundo neutro
o Roupas profissionais

o Boailuminagao

2. Headline

o “QAEngineer | Automacao com Cypress e Robot Framework | ISTQB
Certified”

3. Resumo

o Descrever experiéncia e habilidades
o Incluir links para GitHub e portfélio

o Mencionar certificacdes
4. Experiéncia

o Detalhar responsabilidades
o Incluir métricas e resultados

o Mencionar tecnologias usadas
5. Habilidades

o Adicionar todas as habilidades técnicas
o Pedir endorsements

o Priorizar as mais relevantes
6. Recomendacgoes

o Pedir recomendacoes de colegas e gerentes

o Retribuir com recomendacdes

13.4. Networking e Oportunidades
Estratégias de Networking:
1. Comunidades Online

o Grupos de QA no LinkedIn
o Comunidades no Discord/Slack

o Féruns de discussao
2. Eventos

o Conferéncias de QA

o Meetups locais

o Webinars e workshops
3. Redes Sociais

o Compartilhar conhecimento no LinkedIn
o Publicar artigos no Medium

o Participar de discussoes
4, Contribui¢oes Open Source

o Contribuir em projetos de teste
o Reportar bugs

o Melhorar documentagao

Capitulo 14: Preparacdo para Entrevistas e
Certificacoes

14.1. Perguntas Comuns em Entrevistas
Perguntas Técnicas:
1. Qual é a diferenca entre QA e QC?

o QA é proativo (prevencado), QC é reativo (detec¢ao)

o QA foca em processos, QC foca em produto
2. Explique a Piramide de Testes

o Base: 70% testes de unidade
o Meio: 20% testes de integracao

o Topo: 10% testes E2E
3. Qual é aimportancia de testes automatizados?

o Execucdo rapida e repetivel

o Feedback continuo
o Reducao de custo

o Aumento de cobertura
4. Como voceé abordaria testar uma nova feature?

o Entender requisitos

(@)

Criar plano de teste

(@)

Identificar casos de teste

(0]

Executar testes

(@)

Reportar defeitos
5. Qual é a diferenca entre teste funcional e ndo funcional?

o Funcional: verifica se o sistema faz o que deveria

o Nao funcional: verifica como o sistema funciona (performance, seguranca)
Perguntas Comportamentais:
1. Descreva uma situagao em que vocé encontrou um bug critico

o Contexto: quando e onde
o Acdo: como vocé identificou e reportou

o Resultado: como foi resolvido
2. Como vocé lida com pressao e prazos apertados?

o Priorizar testes criticos
o Comunicar riscos

o Trabalhar em equipe
3. Qual foi seu maior aprendizado em QA?

o Importancia de documentacao
o Colaboracao com desenvolvedores

o Automacao de testes

14.2. Certificacao ISTQB
O que é ISTQB?

ISTQB (International Software Testing Qualifications Board) é uma certificacdo
internacional reconhecida em QA.

Niveis:
1. Foundation Level

o Conceitos basicos de teste
o Tipos de teste
o Planejamento e documentagao

o Duragado: 1-2 meses de estudo
2. Advanced Level

o Tépicos avancados
o Especialidades (Automacao, Performance, Security)

o Duragdo: 2-3 meses de estudo
3. Expert Level

o Nivel mais alto

o Experiéncia pratica necessaria
Topicos do Foundation:

e Conceitos fundamentais de teste
e Testes durante o ciclo de vida

e Técnicas de teste estatico

e Técnicas de design de teste

e Gerenciamento de teste

e Ferramentas de teste
Dicas de Estudo:

1. Usar livros oficiais ISTQB

2. Fazer simulados online
3. Estudar em grupos
4. Revisar conceitos regularmente

5. Praticar com exemplos reais

14.3. Outras Certificacoes Relevantes

Certificacao Fornecedor Foco

Cypress Certified Cypress Automacao Web
Robot Framework Robot Framework Automacao
Certified Foundation Versatil

AWS Certified QA Amazon QA em Cloud
Scrum Master Scrum Alliance Metodologia Agil
Postman Certified Postman Testes de API

14.4. Preparacdo Técnica e Comportamental
Preparac¢do Técnica:
1. Revisar conceitos fundamentais

o Tipos de testes
o Ciclo devida de testes

o Métricas de qualidade
2. Praticar com ferramentas

o Escrever scripts Cypress
o Criar testes Robot Framework

o Testar APls com Postman

Duragao

2-4
semanas

2-4
semanas

4-6
semanas

2-3
semanas

1-2
semanas

