

Índice Clicável

PARTE I: FUNDAMENTOS E CONCEITOS ESSENCIAIS DE QA

1. Capítulo 1: O Universo da Qualidade de Software

1.1. Definição e Importância da Qualidade de Software

1.2. Quality Assurance (QA) vs. Quality Control (QC)

1.3. O Ciclo de Vida do Desenvolvimento de Software (SDLC)

1.4. Mentalidade Shift-Left e Quality First

2. Capítulo 2: Tipos e Níveis de Testes de Software

2.1. A Pirâmide de Testes

2.2. Testes Funcionais

2.3. Testes Não Funcionais

2.4. Técnicas de Design de Testes

2.5. Testes Exploratórios e Ad-Hoc

3. Capítulo 3: Métricas e Indicadores de Qualidade

3.1. Cobertura de Testes

3.2. Densidade de Defeitos

3.3. Taxa de Falha e Confiabilidade

PARTE II: PLANEJAMENTO E DOCUMENTAÇÃO

1. Capítulo 4: O Plano de Teste Profissional

4.1. Estrutura de um Plano de Teste

4.2. Escopo e Estratégia de Teste

4.3. Critérios de Entrada e Saída

4.4. Exemplo Prático de Plano de Teste

2. Capítulo 5: Casos de Teste e Rastreabilidade

5.1. Estrutura de um Caso de Teste

5.2. Matriz de Rastreabilidade (RTM)

5.3. Exemplo Prático de Casos de Teste

PARTE III: FERRAMENTAS E AUTOMAÇÃO DE TESTES

1. Capítulo 6: Jira - Gestão de Testes e Defeitos

6.1. Configuração e Tipos de Issues

6.2. Workflow de Defeitos

6.3. Dashboards e Relatórios

6.4. Integração com Ferramentas de Teste

2. Capítulo 7: JavaScript e Cypress - Automação Web Moderna

7.1. Fundamentos de JavaScript para QA

7.2. Introdução ao Cypress

7.3. Seletores e Localizadores

7.4. Exemplos de Scripts Cypress

7.5. Boas Práticas e Padrões

3. Capítulo 8: Python e Robot Framework - Automação Versátil

8.1. Fundamentos de Python para QA

8.2. Introdução ao Robot Framework

8.3. Bibliotecas Essenciais

8.4. Exemplos de Scripts Robot Framework

8.5. Integração com CI/CD

4. Capítulo 9: Testes de API - A Espinha Dorsal do Software

9.1. Fundamentos de REST e HTTP

9.2. Métodos HTTP e Códigos de Status

9.3. Postman - Testes de API Manuais

9.4. Automação de Testes de API

9.5. Validação de Respostas JSON

5. Capítulo 10: Bash, Linux e Terminal - Ambiente do QA

10.1. Comandos Essenciais de Terminal

10.2. Análise de Logs

10.3. Conectividade e Rede

10.4. Automação com Scripts Bash

10.5. Gerenciamento de Processos

6. Capítulo 11: Node.js e Postman - Testes de API Avançados

11.1. Fundamentos de Node.js

11.2. Postman Collections e Automação

11.3. Testes de API com Postman

11.4. Integração com CI/CD

PARTE IV: CARREIRA E DESENVOLVIMENTO PROFISSIONAL

1. Capítulo 12: Construindo um Portfólio Vencedor

12.1. Componentes Essenciais do Portfólio

12.2. Projetos de Automação

12.3. Documentação e Estudos de Caso

12.4. GitHub e Versionamento

2. Capítulo 13: Currículo e LinkedIn Profissional

13.1. Estrutura de um Currículo Vencedor

13.2. Palavras-Chave e Competências

13.3. Otimização do Perfil LinkedIn

13.4. Networking e Oportunidades

3. Capítulo 14: Preparação para Entrevistas e Certificações

14.1. Perguntas Comuns em Entrevistas

14.2. Certificação ISTQB

14.3. Outras Certificações Relevantes

14.4. Preparação Técnica e Comportamental

Prefácio

A Engenharia de Quality Assurance (QA) transcendeu o papel de simples “caçador de
bugs” para se tornar uma disciplina estratégica e essencial no ciclo de
desenvolvimento de software moderno. Em um mundo onde a velocidade de entrega
é crucial, garantir a qualidade desde o início do processo (shift-left) é o que diferencia
produtos de sucesso de fracassos custosos.

Este e-book foi concebido como um guia completo, prático e profundo para
profissionais que desejam iniciar ou aprimorar sua carreira em QA. Ao longo de mais
de 100 páginas, cobrimos desde os fundamentos teóricos mais sólidos, passando por
técnicas avançadas de planejamento e documentação, até a aplicação prática das
ferramentas de automação mais requisitadas pelo mercado.

Utilizamos como base a valiosa trilha de estudos fornecida pelo leitor,
complementando-a com informações aprofundadas, exemplos de código prontos
para uso, guias passo a passo e orientações de carreira, garantindo que você tenha em
mãos um recurso robusto para construir um portfólio vencedor e se destacar no
mercado de trabalho.

PARTE I: FUNDAMENTOS E CONCEITOS
ESSENCIAIS DE QA

Capítulo 1: O Universo da Qualidade de Software

1.1. Definição e Importância da Qualidade de Software

A Qualidade de Software (QS) pode ser definida como o grau em que um sistema,
componente ou processo atende aos requisitos especificados e às necessidades ou
expectativas do cliente/usuário. É um conceito multifacetado que abrange não apenas
a ausência de defeitos, mas também a usabilidade, eficiência, manutenibilidade,
confiabilidade, segurança e performance do produto.

O Custo da Não Qualidade (CoNQ)

O Custo da Não Qualidade (CoNQ) é um conceito crucial que todo profissional de QA
deve compreender profundamente. Ele representa todos os custos incorridos devido
a:

Falhas em produção: Indisponibilidade do sistema, perda de dados, corrupção
de informações

Retrabalho: Correção de bugs, refatoração de código, reteste

Suporte ao cliente: Atendimento a reclamações, resolução de problemas

Perda de reputação: Danos à marca, perda de confiança dos usuários

Oportunidades de negócio perdidas: Clientes que não adotam o produto,
churn de usuários

Estudos demonstram que quanto mais tarde um defeito é encontrado no ciclo de
desenvolvimento, mais caro se torna corrigi-lo. A regra empírica é:

Fase de Descoberta Custo Relativo de Correção

Requisitos 1x

Design 3-6x

Desenvolvimento 10-15x

Teste 15-40x

Produção 100-1000x

Um bug encontrado em produção pode custar até 1000 vezes mais do que se fosse
encontrado na fase de requisitos. Isso justifica o investimento em QA desde o início do
projeto.

Mentalidade de “Quality First”

A mentalidade de “Quality First” (Qualidade em Primeiro Lugar) é a base da
Engenharia de QA moderna. Ela exige que:

1. A qualidade seja uma responsabilidade compartilhada por toda a equipe
(desenvolvedores, designers, gerentes de produto, QA e liderança)

2. A qualidade seja considerada desde o início do projeto, não apenas como uma
etapa final

3. Os processos sejam robustos para prevenir defeitos, não apenas detectá-los

4. A automação seja priorizada para permitir feedback rápido e contínuo

5. A cultura de qualidade seja cultivada em toda a organização

1.2. Quality Assurance (QA) vs. Quality Control (QC)

Embora frequentemente usados como sinônimos, Quality Assurance (QA) e Quality
Control (QC) representam abordagens distintas, mas complementares, na gestão da
qualidade.

Característica Quality Assurance (QA) Quality Control (QC)

Foco Processos e Prevenção Produto e Detecção

Natureza Proativo Reativo

Quando Ocorre
Durante todo o ciclo de
desenvolvimento

Após a conclusão do produto ou
módulo

Objetivo
Garantir que os processos corretos
sejam seguidos para evitar defeitos

Identificar e corrigir defeitos no
produto final

Exemplos

Revisão de requisitos, Definição de
padrões de codificação,
Treinamento, Auditorias,
Planejamento de testes

Execução de testes (funcionais,
regressão), Inspeções, Revisão
de código, Testes de aceitação

Responsabilidade Toda a equipe Principalmente QA/Testadores

Pergunta Chave “Como vamos garantir qualidade?”
“O produto atende aos
padrões de qualidade?”

O QA é o guarda-chuva estratégico que estabelece o como a qualidade será alcançada.
Ele garante que o processo de desenvolvimento (o meio) seja robusto, documentado e
repetível. O QC é a tática operacional que verifica se o produto final (o fim) atende aos
padrões estabelecidos.

Um Engenheiro de QA moderno atua em ambas as frentes, mas com uma forte
inclinação para a prevenção (QA). Isso significa:

Participar de reuniões de requisitos para garantir clareza

Revisar designs e arquiteturas para identificar riscos

Colaborar com desenvolvedores durante a implementação

Executar testes estratégicos (QC) quando apropriado

Automatizar testes para feedback contínuo

1.3. O Ciclo de Vida do Desenvolvimento de Software (SDLC)

O QA está presente em todas as fases do SDLC, independentemente da metodologia
(Cascata, Ágil, DevOps). Vamos detalhar cada fase:

Fase 1: Requisitos

Atividades de QA:

Análise de requisitos para clareza, completude e testabilidade

Identificação de ambiguidades e inconsistências

Definição de critérios de aceitação

Participação em reuniões de refinamento

Exemplo: Se um requisito diz “O sistema deve ser rápido”, o QA questiona: “Rápido
significa menos de 1 segundo? 2 segundos? Para qual operação?” Isso garante que os
testes sejam objetivos.

Fase 2: Design

Atividades de QA:

Revisão da arquitetura e design para identificar potenciais pontos de falha

Análise de fluxos de dados e integrações

Identificação de cenários de erro e edge cases

Planejamento de estratégia de teste

Fase 3: Implementação

Atividades de QA:

Desenvolvimento de testes de unidade (muitas vezes pelo próprio
desenvolvedor)

Desenvolvimento de testes de integração (SDET ou QA)

Code review com foco em testabilidade

Preparação de ambientes de teste

Fase 4: Teste

Atividades de QA:

Execução de testes funcionais e não funcionais

Execução de testes de aceitação (UAT)

Reporte de defeitos com informações detalhadas

Validação de correções

Fase 5: Implantação

Atividades de QA:

Testes de fumaça (smoke tests) no ambiente de produção

Validação de dados migrados

Monitoramento de logs e métricas

Suporte ao rollback se necessário

Fase 6: Manutenção

Atividades de QA:

Testes de regressão para novas funcionalidades ou correções

Monitoramento de qualidade em produção

Análise de incidentes

Otimização de testes baseada em feedback

1.4. Mentalidade Shift-Left e Quality First

Shift-Left é um conceito que significa mover as atividades de teste para a esquerda no
timeline do projeto, ou seja, começar mais cedo. Em vez de testar apenas no final, o
QA participa desde o início.

Benefícios do Shift-Left:

1. Detecção precoce de defeitos: Bugs encontrados no início são mais baratos de
corrigir

2. Feedback contínuo: Os desenvolvedores recebem feedback sobre qualidade em
tempo real

3. Redução de retrabalho: Menos surpresas desagradáveis no final do projeto

4. Melhor colaboração: QA e desenvolvedores trabalham juntos desde o início

5. Automação eficaz: Testes automatizados podem rodar continuamente

Implementação Prática:

Pair Testing: QA trabalha ao lado do desenvolvedor enquanto o código é escrito

Test-Driven Development (TDD): Testes são escritos antes do código

Behavior-Driven Development (BDD): Testes são escritos em linguagem natural
que todos entendem

Code Review: QA participa de revisões de código

Capítulo 2: Tipos e Níveis de Testes de Software

2.1. A Pirâmide de Testes

A Pirâmide de Testes é um modelo conceitual que sugere a proporção ideal de
diferentes tipos de testes em um projeto. Ela foi popularizada por Mike Cohn e é
fundamental para uma estratégia de teste eficaz.

Estrutura da Pirâmide

 /\

 / \

 / E2E \

 / UI \

 /--------\

 / \

 / Integração \

 / / Serviço \

/---/----------\

 / \

 / Testes de \

 / Unidade \

 /________________\

Base (70%): Testes de Unidade

Características:

Testam a menor parte testável do código (funções, métodos, classes)

Rápidos (executam em milissegundos)

Baratos (fáceis de escrever e manter)

Isolados (não dependem de outros componentes)

Executados frequentemente (a cada commit)

Exemplo:

// Teste de unidade para uma função de cálculo de desconto

function calculateDiscount(price, discountPercent) {

 return price * (1 - discountPercent / 100);

}

test('calculateDiscount deve retornar preço correto', () => {

 expect(calculateDiscount(100, 10)).toBe(90);

 expect(calculateDiscount(50, 20)).toBe(40);

});

Meio (20%): Testes de Integração/Serviço

Características:

Testam a comunicação entre componentes

Incluem interações com banco de dados, APIs externas, serviços

Mais lentos que testes de unidade (executam em segundos)

Mais caros de escrever e manter

Executados frequentemente (a cada build)

Exemplo:

// Teste de integração para uma API de usuário

test('GET /users/:id deve retornar usuário', async () => {

 const response = await request(app)

 .get('/users/1')

 .expect(200);

 expect(response.body).toHaveProperty('id', 1);

 expect(response.body).toHaveProperty('name');

});

Topo (10%): Testes de UI/E2E

Características:

Testam o fluxo completo do usuário

Incluem interações com a interface (cliques, digitação)

Lentos (executam em segundos ou minutos)

Caros de escrever e manter

Frágeis (quebram facilmente com mudanças na interface)

Executados com menos frequência (antes de releases)

Exemplo:

// Teste E2E com Cypress

describe('Fluxo de Login', () => {

 it('Usuário deve fazer login com sucesso', () => {

 cy.visit('https://example.com/login');

 cy.get('input[name="email"]').type('user@example.com');

 cy.get('input[name="password"]').type('senha123');

 cy.get('button[type="submit"]').click();

 cy.url().should('include', '/dashboard');

 });

});

Por que essa proporção?

A regra é: quanto mais baixo na pirâmide, mais testes, mais rápidos e mais
baratos. O objetivo é encontrar a maioria dos bugs na base, onde o custo de correção

é menor.

Se você inverter a pirâmide (muitos testes E2E, poucos testes de unidade), você terá:

Suite de testes lenta (demora horas para rodar)

Custo alto de manutenção

Feedback lento para os desenvolvedores

Maior chance de falsos positivos

2.2. Testes Funcionais

Testes funcionais verificam se o sistema atende aos requisitos e especificações de
negócio. Eles focam no “o que” o sistema faz, não em “como” ele faz.

Tipo de Teste
Funcional

Foco Principal Explicação Abrangente Quando Usar

Unidade
(Unit)

Componentes
isolados (funções,
métodos)

Testam a menor parte testável
do código. Essenciais para
garantir a lógica interna. Escritos
pelo desenvolvedor.

Sempre, a cada
commit

Integração
(Integration)

Fluxo de dados
entre módulos

Verificam se os módulos
interagem corretamente,
incluindo conexões com bancos
de dados e serviços externos.

Após testes de
unidade, antes
de testes de
sistema

Sistema
(System)

O sistema como um
todo

Testam o comportamento
completo do sistema em um
ambiente que simula a
produção.

Após integração
estar completa

Regressão
(Regression)

Funcionalidades
existentes

Garantem que novas alterações
(correções ou novas features)
não quebraram funcionalidades
que já estavam funcionando.

Após cada
mudança no
código

Aceitação
(UAT)

Necessidades do
usuário final

Testes formais realizados pelo
cliente ou Product Owner para
aceitar ou rejeitar o sistema.

Antes da release
para produção

Fumaça
(Smoke)

Funcionalidades
críticas

Testes rápidos que verificam se
as funcionalidades críticas estão
funcionando.

Após deploy em
novo ambiente

Exemplo Prático: Teste de Regressão

Cenário: Você corrigiu um bug na tela de checkout onde o cupom de desconto não
estava sendo aplicado. Agora você precisa executar testes de regressão para garantir
que a correção não quebrou outras funcionalidades.

Casos de Teste de Regressão:

1. Login com credenciais válidas

2. Adicionar item ao carrinho

3. Visualizar carrinho

4. Aplicar cupom de desconto válido

5. Remover cupom de desconto

6. Alterar quantidade de itens

7. Prosseguir para checkout

8. Preencher dados de entrega

9. Selecionar método de pagamento

10. Confirmar pedido

Se todos esses testes passarem, você tem confiança de que a correção não causou
regressões.

2.3. Testes Não Funcionais

Testes não funcionais avaliam o quão bem o sistema funciona, focando em atributos
de qualidade como performance, segurança, confiabilidade e usabilidade.

Tipo de Teste Não
Funcional

Foco Principal Explicação Abrangente Métrica Típica

Desempenho
(Performance)

Velocidade e
responsividade

Mede o tempo de resposta
do sistema sob condições
normais. Exemplo: Página
deve carregar em menos de
2 segundos.

Tempo de
resposta (ms)

Carga (Load)
Comportamento
sob carga esperada

Simula o número esperado
de usuários para verificar a
estabilidade. Exemplo:
Sistema deve suportar 1000
usuários simultâneos.

Usuários
simultâneos

Estresse (Stress)
Comportamento
sob carga extrema

Simula uma carga muito
acima do esperado para
encontrar o ponto de falha
do sistema.

Ponto de ruptura

Segurança
(Security)

Vulnerabilidades e
proteção de dados

Identifica falhas de
segurança, como injeção
SQL, XSS, CSRF e
vulnerabilidades de
autenticação.

Vulnerabilidades
encontradas

Usabilidade
(Usability)

Facilidade de uso e
experiência do
usuário

Avalia a interface e a
experiência do usuário para
garantir que o sistema seja
intuitivo e fácil de usar.

Satisfação do
usuário

Compatibilidade
(Compatibility)

Diferentes
ambientes
(navegadores, SOs)

Garante que o software
funciona corretamente em
diferentes plataformas,
navegadores e dispositivos.

Plataformas
suportadas

Confiabilidade
(Reliability)

Estabilidade ao
longo do tempo

Testa se o sistema
permanece estável durante
um período prolongado de
operação.

MTBF (Mean Time
Between Failures)

Recuperação
(Recovery)

Capacidade de
recuperação após

Testa se o sistema consegue
se recuperar de falhas de

RTO (Recovery
Time Objective)

Tipo de Teste Não
Funcional

Foco Principal Explicação Abrangente Métrica Típica

falhas forma graciosa.

Exemplo Prático: Teste de Carga

Cenário: Você está testando um e-commerce que espera 5000 usuários simultâneos
durante a Black Friday.

Teste de Carga:

1. Simular 5000 usuários acessando o site simultaneamente

2. Cada usuário navega por 10 páginas, adiciona 3 itens ao carrinho e faz checkout

3. Medir:
Tempo de resposta médio

Tempo de resposta máximo (P95, P99)

Taxa de erro

Throughput (requisições por segundo)

Utilização de CPU e memória

Resultado Esperado:

Tempo de resposta médio: < 2 segundos

P95: < 5 segundos

Taxa de erro: < 0,1%

Throughput: > 1000 req/s

Se o teste falhar, você identifica o gargalo (banco de dados, servidor, rede) e otimiza
antes da Black Friday.

2.4. Técnicas de Design de Testes

As técnicas de design de testes ajudam o QA a criar casos de teste eficazes, cobrindo o
máximo de cenários com o mínimo de esforço.

Testes de Caixa Branca (White-Box)

Baseados na estrutura interna do código. O testador precisa conhecer o código-fonte.

Técnicas:

Cobertura de Código (Code Coverage): Garante que todas as linhas de código
foram executadas

Cobertura de Branches: Garante que todos os caminhos possíveis (if/else) foram
testados

Cobertura de Condições: Garante que todas as condições lógicas foram testadas

Exemplo:

function validateAge(age) {

 if (age < 0) {

 return "Idade não pode ser negativa";

 } else if (age < 18) {

 return "Menor de idade";

 } else if (age > 120) {

 return "Idade inválida";

 } else {

 return "Maior de idade";

 }

}

// Testes para cobertura total:

test('validateAge com idade negativa', () => {

 expect(validateAge(-5)).toBe("Idade não pode ser negativa");

});

test('validateAge com menor de idade', () => {

 expect(validateAge(15)).toBe("Menor de idade");

});

test('validateAge com idade válida', () => {

 expect(validateAge(25)).toBe("Maior de idade");

});

test('validateAge com idade muito alta', () => {

 expect(validateAge(150)).toBe("Idade inválida");

});

Testes de Caixa Preta (Black-Box)

Baseados nos requisitos e funcionalidades, sem conhecimento da estrutura interna.

Técnicas:

Particionamento de Equivalência: Dividir as entradas em grupos que devem se
comportar de forma similar

Análise de Valor Limite: Testar os limites dos grupos de equivalência

Tabela de Decisão: Testar combinações de condições

Exemplo:

// Requisito: "O sistema deve aceitar idades entre 18 e 100 anos"

// Particionamento de Equivalência:

// Grupo 1: Idades válidas (18-100)

// Grupo 2: Idades inválidas (< 18)

// Grupo 3: Idades inválidas (> 100)

// Análise de Valor Limite:

// Testes: 17, 18, 19, 99, 100, 101

test('Aceita idade 18 (limite inferior)', () => {

 expect(isValidAge(18)).toBe(true);

});

test('Rejeita idade 17 (abaixo do limite)', () => {

 expect(isValidAge(17)).toBe(false);

});

test('Aceita idade 100 (limite superior)', () => {

 expect(isValidAge(100)).toBe(true);

});

test('Rejeita idade 101 (acima do limite)', () => {

 expect(isValidAge(101)).toBe(false);

});

Testes de Caixa Cinza (Gray-Box)

Combinação das duas, onde o testador tem conhecimento parcial da estrutura interna
(ex: acesso a logs ou banco de dados).

2.5. Testes Exploratórios e Ad-Hoc

Testes Exploratórios são testes não roteirizados onde o testador explora o sistema de
forma criativa, buscando encontrar defeitos que testes formais podem não encontrar.

Características:

Não seguem um plano rígido

Baseados na experiência e intuição do testador

Úteis para encontrar defeitos inesperados

Documentados em tempo real

Exemplo de Sessão de Teste Exploratório:

1. Objetivo: Encontrar defeitos na tela de cadastro de usuário

2. Tempo: 1 hora

3. Atividades:
Tentar cadastrar com email vazio

Tentar cadastrar com email inválido (sem @)

Tentar cadastrar com senha muito curta

Tentar cadastrar com caracteres especiais no nome

Tentar cadastrar com espaços em branco

Tentar cadastrar o mesmo email duas vezes

Tentar cadastrar com navegador em modo offline

4. Defeitos encontrados:
Campo de email aceita espaços em branco

Mensagem de erro não é clara

Botão de envio fica desabilitado por muito tempo

Capítulo 3: Métricas e Indicadores de Qualidade

3.1. Cobertura de Testes

A Cobertura de Testes mede a porcentagem de código que foi executada pelos testes.

Tipos de Cobertura:

Tipo Definição Fórmula Objetivo

Cobertura de
Linhas

Porcentagem de linhas de
código executadas

(Linhas executadas / Total de
linhas) × 100

> 80%

Cobertura de
Branches

Porcentagem de caminhos de
código executados

(Branches executados / Total
de branches) × 100

> 75%

Cobertura de
Funções

Porcentagem de funções
testadas

(Funções testadas / Total de
funções) × 100

> 80%

Cobertura de
Condições

Porcentagem de condições
lógicas testadas

(Condições testadas / Total
de condições) × 100

> 70%

Exemplo com JavaScript/Jest:

// arquivo.js

function calculateTotal(items) {

 let total = 0;

 for (let item of items) {

 if (item.discount) {

 total += item.price * (1 - item.discount);

 } else {

 total += item.price;

 }

 }

 return total;

}

// arquivo.test.js

describe('calculateTotal', () => {

 test('Calcula total sem desconto', () => {

 const items = [{ price: 100, discount: 0 }];

 expect(calculateTotal(items)).toBe(100);

 });

 test('Calcula total com desconto', () => {

 const items = [{ price: 100, discount: 0.1 }];

 expect(calculateTotal(items)).toBe(90);

 });

 test('Calcula total com múltiplos itens', () => {

 const items = [

 { price: 100, discount: 0 },

 { price: 50, discount: 0.2 }

];

 expect(calculateTotal(items)).toBe(140);

 });

});

// Cobertura esperada: 100% de linhas, branches e funções

3.2. Densidade de Defeitos

A Densidade de Defeitos mede a quantidade de defeitos encontrados por unidade de
código.

Fórmula:

Densidade de Defeitos = (Número de Defeitos / Linhas de Código) × 1000

Interpretação:

0-0.5 defeitos por 1000 linhas: Excelente

0.5-1.0 defeitos por 1000 linhas: Bom

1.0-2.0 defeitos por 1000 linhas: Aceitável

> 2.0 defeitos por 1000 linhas: Ruim

Exemplo:

Módulo A: 10 defeitos, 5000 linhas de código
Densidade = (10 / 5000) × 1000 = 2.0 (Ruim)

Módulo B: 3 defeitos, 5000 linhas de código
Densidade = (3 / 5000) × 1000 = 0.6 (Bom)

3.3. Taxa de Falha e Confiabilidade

A Taxa de Falha mede quantas vezes o sistema falha em um período.

Métricas Relacionadas:

Métrica Definição Fórmula

MTBF Tempo médio entre falhas
Total de horas / Número de
falhas

MTTR Tempo médio para reparar
Total de horas de reparo /
Número de falhas

Disponibilidade
Porcentagem de tempo que o sistema
está disponível

(MTBF / (MTBF + MTTR)) × 100

Exemplo:

Sistema funcionou 720 horas em um mês

Teve 4 falhas

Cada falha levou em média 2 horas para reparar

Cálculos:

MTBF = 720 / 4 = 180 horas

MTTR = (4 × 2) / 4 = 2 horas

Disponibilidade = (180 / (180 + 2)) × 100 = 98.9%

PARTE II: PLANEJAMENTO E
DOCUMENTAÇÃO

Capítulo 4: O Plano de Teste Profissional

O Plano de Teste é o documento fundamental que descreve o escopo, a abordagem,
os recursos e o cronograma das atividades de teste. Ele serve como um guia para a
equipe de QA e como um contrato de qualidade com as partes interessadas.

4.1. Estrutura de um Plano de Teste

A estrutura de um Plano de Teste deve ser clara, abrangente e seguir padrões
reconhecidos como IEEE 829.

Seção Essencial Conteúdo Detalhado Exemplo

1. Introdução
Objetivo do plano, escopo do
produto, referências
(documentos de requisitos).

“Este plano descreve a estratégia de
teste para o módulo de pagamento
da versão 2.0 do e-commerce.”

2. Itens a Serem
Testados

Módulos, funcionalidades ou
requisitos que serão incluídos no
teste.

“Processamento de pagamento,
validação de cartão, confirmação de
pedido”

3. Itens Não
Testados

O que explicitamente NÃO será
testado e por quê.

“Interface de administrador (fora do
escopo), integração com sistema
legado (em desenvolvimento)”

4. Estratégia de
Teste

Abordagem geral
(manual/automação, tipos de
testes, prioridades).

“70% automação, 30% manual; Foco
em testes de regressão e aceitação”

5. Recursos
Pessoas, ferramentas, ambientes
e orçamento.

“2 QA, 1 SDET, Jira, Cypress,
Postman, Ambiente de staging”

6. Cronograma
Datas de início e fim de cada fase
de teste.

“Teste funcional: 01-15 de março;
Teste de regressão: 16-20 de março”

7. Critérios de
Entrada

Condições que devem ser
atendidas antes de iniciar os
testes.

“Código deve estar compilado,
testes de unidade devem passar,
ambiente deve estar configurado”

8. Critérios de
Saída

Condições que devem ser
atendidas para considerar os
testes concluídos.

“Cobertura > 80%, 0 bugs críticos,
95% dos testes devem passar”

9. Riscos e
Contingências

Riscos identificados e planos de
mitigação.

“Risco: Ambiente de staging pode
ficar indisponível. Mitigação: Usar
ambiente de backup”

10. Aprovações Assinaturas de stakeholders.
“Gerente de Projeto, Líder de QA,
Product Owner”

4.2. Escopo e Estratégia de Teste

Definindo o Escopo

O escopo define exatamente o que será e o que não será testado. Isso é crucial para
evitar ambiguidades.

Exemplo de Escopo Bem Definido:

ESCOPO INCLUÍDO:

✓ Login com email e senha

✓ Recuperação de senha

✓ Cadastro de novo usuário

✓ Edição de perfil

✓ Logout

ESCOPO NÃO INCLUÍDO:

✗ Login com redes sociais (integração com terceiros)
✗ Autenticação de dois fatores (em desenvolvimento)

✗ Interface de administrador (será testada em sprint posterior)

Estratégia de Teste

A estratégia define como você vai testar.

Exemplo de Estratégia:

ESTRATÉGIA DE TESTE - Módulo de Autenticação

1. TIPOS DE TESTES:

 - Testes de Unidade (desenvolvedor)

 - Testes de Integração (QA)

 - Testes Funcionais (QA)

 - Testes de Segurança (QA especializado)

2. PROPORÇÃO:

 - 60% Automação (Cypress para testes E2E)

 - 40% Manual (testes exploratórios, segurança)

3. PRIORIDADE:

 - P1 (Crítica): Login, logout, recuperação de senha

 - P2 (Alta): Validação de email, força de senha

 - P3 (Média): Mensagens de erro, UX

4. AMBIENTE:

 - Desenvolvimento: Testes de unidade

 - Staging: Testes de integração e funcionais

 - Produção: Testes de fumaça após deploy

5. FERRAMENTAS:

 - Cypress (testes E2E)

 - Postman (testes de API)

 - OWASP ZAP (testes de segurança)

 - Jira (rastreamento de defeitos)

4.3. Critérios de Entrada e Saída

Critérios de Entrada

Condições que devem ser atendidas ANTES de iniciar os testes.

Exemplo:

CRITÉRIOS DE ENTRADA:

☐ Código deve estar compilado sem erros
☐ Testes de unidade devem passar (100%)
☐ Ambiente de staging deve estar disponível
☐ Dados de teste devem estar carregados
☐ Plano de teste deve ser aprovado
☐ Ferramentas de teste devem estar configuradas
☐ Acesso a contas de teste deve ser fornecido

Se algum critério não for atendido, os testes não devem começar.

Critérios de Saída

Condições que devem ser atendidas para considerar os testes concluídos.

Exemplo:

CRITÉRIOS DE SAÍDA:

☐ Cobertura de testes > 80%
☐ 0 bugs críticos ou bloqueadores
☐ 95% dos testes devem passar
☐ Todos os bugs P1 devem ser corrigidos
☐ Todos os casos de teste devem ser executados
☐ Relatório de teste deve ser gerado
☐ Aprovação do gerente de projeto

4.4. Exemplo Prático de Plano de Teste

PLANO DE TESTE - E-commerce v2.0 (Módulo de Carrinho)

PLANO DE TESTE - Módulo de Carrinho de Compras

1. Introdução

Este plano descreve a estratégia de teste para o módulo de carrinho de

compras

da versão 2.0 do e-commerce. O objetivo é garantir que os usuários possam

adicionar, remover e modificar itens no carrinho de forma confiável.

2. Escopo

Incluído:

- Adicionar item ao carrinho

- Remover item do carrinho

- Alterar quantidade de itens

- Aplicar cupom de desconto

- Visualizar total do carrinho

- Persistência de carrinho (entre sessões)

Não Incluído:

- Integração com gateway de pagamento

- Envio de email de carrinho abandonado

- Recomendações de produtos

3. Estratégia de Teste

- **Tipos de Testes**: Funcional, Integração, E2E

- **Proporção**: 70% Automação, 30% Manual

- **Ferramentas**: Cypress, Postman, Jira

- **Ambiente**: Staging

4. Recursos

- 1 QA (Teste Manual)

- 1 SDET (Automação)

- 1 Desenvolvedor (Suporte)

- Ambiente de Staging

- Dados de teste (100 produtos, 50 cupons)

5. Cronograma

- Teste Funcional: 01-05 de março

- Teste de Integração: 06-08 de março

- Teste E2E: 09-10 de março

- Teste de Regressão: 11-12 de março

- Relatório Final: 13 de março

6. Critérios de Entrada

- ☐ Código compilado
- ☐ Testes de unidade passando

- ☐ Ambiente de staging disponível
- ☐ Dados de teste carregados
- ☐ Acesso a contas de teste

7. Critérios de Saída

- ☐ Cobertura > 85%
- ☐ 0 bugs críticos
- ☐ 98% dos testes passando
- ☐ Todos os casos de teste executados

8. Riscos

- **Risco**: Ambiente de staging pode ficar indisponível

 Mitigação: Usar ambiente de backup

- **Risco**: Dados de teste insuficientes

 Mitigação: Preparar dados adicionais antecipadamente

9. Aprovações

- Gerente de Projeto: ___________

- Líder de QA: ___________

- Product Owner: ___________

Capítulo 5: Casos de Teste e Rastreabilidade

5.1. Estrutura de um Caso de Teste

Um Caso de Teste é um conjunto de condições ou variáveis sob as quais um testador
determinará se um sistema atende aos requisitos.

Componentes Essenciais:

Componente Descrição Exemplo

ID Identificador único TC-001

Título
Descrição breve do que está
sendo testado

“Validar login com email e senha
corretos”

Pré-condições
Estado do sistema antes do
teste

“Usuário não está logado, conta existe
no sistema”

Passos
Ações específicas que o
testador deve executar

1. Ir para página de login; 2. Digitar
email; 3. Digitar senha; 4. Clicar em Login

Dados de
Entrada

Valores específicos para o teste
Email: “user@example.com”, Senha:
“senha123”

Resultado
Esperado

O que deve acontecer se o
teste passar

“Usuário é redirecionado para
dashboard”

Resultado
Atual

O que realmente aconteceu Preenchido durante a execução

Status Pass/Fail/Blocked Pass

Prioridade Crítica/Alta/Média/Baixa Crítica

Observações Qualquer informação adicional “Teste executado em Chrome 120”

5.2. Matriz de Rastreabilidade (RTM)

A Matriz de Rastreabilidade (Requirements Traceability Matrix - RTM) garante que
cada requisito tenha pelo menos um caso de teste associado.

Exemplo de RTM:

ID
Requisito

Descrição do Requisito
ID Caso
de Teste

Status Observações

REQ-001
Usuário deve fazer login com
email e senha

TC-001,
TC-002

Coberto 2 casos de teste

REQ-002
Usuário deve receber erro
com credenciais inválidas

TC-003,
TC-004

Coberto
Testa email inválido e
senha inválida

REQ-003
Usuário deve poder
recuperar senha

TC-005,
TC-006

Coberto
Testa link válido e
expirado

REQ-004
Sessão deve expirar após 30
minutos

TC-007 Coberto Teste de timeout

REQ-005
Senha deve ter mínimo 8
caracteres

TC-008 Coberto
Validação de força de
senha

Benefícios da RTM:

Garante cobertura completa de requisitos

Identifica requisitos sem testes

Facilita rastreamento de defeitos para requisitos

Ajuda na análise de impacto de mudanças

5.3. Exemplo Prático de Casos de Teste

CASOS DE TESTE - Módulo de Login

CASO DE TESTE TC-001

Título: Login com credenciais válidas

ID: TC-001

Prioridade: Crítica

Módulo: Autenticação

Pré-condições:

- Usuário não está logado

- Conta "user@example.com" existe no sistema

- Senha da conta é "senha123"

Passos:

1. Abrir navegador e acessar https://example.com/login

2. Digitar "user@example.com" no campo de email

3. Digitar "senha123" no campo de senha

4. Clicar no botão "Login"

Dados de Entrada:

- Email: user@example.com

- Senha: senha123

Resultado Esperado:

- Usuário é redirecionado para a página de dashboard

- URL muda para https://example.com/dashboard

- Nome do usuário aparece no canto superior direito

- Mensagem de sucesso é exibida (opcional)

Resultado Atual:

- ✓ Usuário redirecionado para dashboard

- ✓ URL correta

- ✓ Nome do usuário exibido

- ✓ Sem mensagem de erro

Status: PASS

Data de Execução: 2025-03-01

Testador: João Silva

Navegador: Chrome 120

SO: Windows 10

CASO DE TESTE TC-002

Título: Login com email inválido

ID: TC-002

Prioridade: Alta

Módulo: Autenticação

Pré-condições:

- Usuário não está logado

- Email "invalido@example.com" não existe no sistema

Passos:

1. Abrir navegador e acessar https://example.com/login

2. Digitar "invalido@example.com" no campo de email

3. Digitar qualquer senha no campo de senha

4. Clicar no botão "Login"

Dados de Entrada:

- Email: invalido@example.com

- Senha: qualquersenha

Resultado Esperado:

- Usuário permanece na página de login

- Mensagem de erro é exibida: "Email ou senha incorretos"

- Campo de senha é limpo

- Campo de email mantém o valor digitado

Resultado Atual:

- ✓ Usuário permanece na página de login

- ✓ Mensagem de erro exibida

- ✓ Campo de senha limpo

- ✓ Campo de email mantém valor

Status: PASS

Data de Execução: 2025-03-01

Testador: João Silva

CASO DE TESTE TC-003

Título: Login com senha inválida

ID: TC-003

Prioridade: Alta

Módulo: Autenticação

Pré-condições:

- Usuário não está logado

- Conta "user@example.com" existe no sistema

- Senha correta é "senha123"

Passos:

1. Abrir navegador e acessar https://example.com/login

2. Digitar "user@example.com" no campo de email

3. Digitar "senhaerrada" no campo de senha

4. Clicar no botão "Login"

Dados de Entrada:

- Email: user@example.com

- Senha: senhaerrada

Resultado Esperado:

- Usuário permanece na página de login

- Mensagem de erro é exibida: "Email ou senha incorretos"

- Campo de senha é limpo

- Campo de email mantém o valor digitado

Resultado Atual:

- ✓ Usuário permanece na página de login

- ✓ Mensagem de erro exibida

- ✓ Campo de senha limpo

- ✓ Campo de email mantém valor

Status: PASS

Data de Execução: 2025-03-01

Testador: João Silva

PARTE III: FERRAMENTAS E AUTOMAÇÃO
DE TESTES

Capítulo 6: Jira - Gestão de Testes e Defeitos

O Jira é a ferramenta mais popular para rastreamento de issues, gestão de projetos e
organização de testes em ambientes ágeis.

6.1. Configuração e Tipos de Issues

Tipos de Issues Essenciais para QA

Tipo de
Issue

Descrição Exemplo

Bug
Defeito encontrado durante
testes

“Botão de login não funciona em Safari”

Story
Requisito de negócio a ser
desenvolvido

“Como usuário, quero fazer login com
email e senha”

Task Tarefa técnica ou administrativa “Configurar ambiente de staging”

Test Case
Caso de teste (com plugin Xray ou
Zephyr)

“Validar login com credenciais válidas”

Sub-task Subtarefa de uma issue maior “Escrever testes de unidade para login”

Epic
Conjunto grande de
funcionalidades

“Implementar sistema de autenticação”

Campos Importantes para QA

Campo Descrição Valores Típicos

Summary Título da issue “Login não funciona em Safari”

Description Descrição detalhada
“Passos para reproduzir, resultado esperado
vs. atual”

Priority Prioridade da issue Blocker, Critical, High, Medium, Low

Severity Impacto do defeito Critical, Major, Minor, Trivial

Assignee Pessoa responsável Nome do desenvolvedor ou QA

Reporter Pessoa que reportou Nome do QA que encontrou o defeito

Status Estado atual To Do, In Progress, In Test, Done

Component Módulo afetado Login, Carrinho, Pagamento

Labels Tags adicionais regression, security, performance

Fix Version Versão que corrige v2.0, v2.1

Environment
Onde o defeito foi
encontrado

Chrome 120, Windows 10, Staging

6.2. Workflow de Defeitos

Um workflow define os estados pelos quais uma issue passa durante seu ciclo de
vida.

Workflow Típico para Bugs:

┌─────────────┐

│ Aberto │ (QA encontrou o bug)

└──────┬──────┘

 │

 ▼

┌─────────────────┐

│ Atribuído │ (Atribuído a um desenvolvedor)

└──────┬──────────┘

 │

 ▼

┌─────────────────┐

│ Em Progresso │ (Desenvolvedor está corrigindo)

└──────┬──────────┘

 │

 ▼

┌─────────────────┐

│ Em Teste │ (QA está testando a correção)

└──────┬──────────┘

 │

 ├─── Não Passa ──┐

 │ │

 │ ▼

 │ ┌──────────────┐

 │ │ Reabertura │

 │ └──────┬───────┘

 │ │

 │ └──────────────┐

 │ │

 └──────────────────────────────┬─┘

 │

 ▼

 ┌──────────────┐

 │ Fechado │ (Correção validada)

 └──────────────┘

Transições e Regras:

De Para Quem Condição

Aberto Atribuído QA/Gerente Bug é válido e tem impacto

Atribuído Em Progresso Desenvolvedor Desenvolvedor começa a trabalhar

Em Progresso Em Teste Desenvolvedor Correção está pronta para teste

Em Teste Fechado QA Correção foi validada

Em Teste Reabertura QA Correção não funciona ou causa regressão

Reabertura Em Progresso Desenvolvedor Desenvolvedor continua trabalhando

6.3. Dashboards e Relatórios

Dashboard de Qualidade

Um dashboard típico para QA mostra:

Métricas Principais:

Total de Bugs: 45 (10 Críticos, 15 Altos, 20 Médios)

Taxa de Resolução: 80% (36 de 45 bugs corrigidos)

Tempo Médio de Resolução: 3 dias

Bugs Abertos por Prioridade: Gráfico de pizza

Bugs por Módulo: Gráfico de barras

Tendência de Bugs: Gráfico de linha

Relatório de Teste

Um relatório de teste típico inclui:

RELATÓRIO DE TESTE - Sprint 15

Resumo Executivo

- **Período**: 01-15 de março de 2025

- **Módulos Testados**: Login, Carrinho, Pagamento

- **Total de Casos de Teste**: 150

- **Casos Executados**: 145 (96.7%)

- **Taxa de Sucesso**: 92% (133 de 145)

- **Bugs Encontrados**: 12 (8 Críticos, 4 Altos)

Detalhes por Módulo

Login

- Casos de Teste: 40

- Executados: 40

- Passaram: 38

- Falharam: 2

- Taxa de Sucesso: 95%

- Bugs Críticos: 1

Carrinho

- Casos de Teste: 60

- Executados: 60

- Passaram: 56

- Falharam: 4

- Taxa de Sucesso: 93%

- Bugs Críticos: 3

Pagamento

- Casos de Teste: 50

- Executados: 45

- Passaram: 39

- Falharam: 6

- Taxa de Sucesso: 87%

- Bugs Críticos: 4

Bugs Encontrados

| ID | Título | Prioridade | Status |

| :--- | :--- | :--- | :--- |

| BUG-001 | Login não funciona em Safari | Crítica | Fechado |

| BUG-002 | Carrinho não persiste após logout | Crítica | Em Teste |

| BUG-003 | Cupom de desconto não aplica | Alta | Em Progresso |

| BUG-004 | Pagamento falha com cartão de crédito | Crítica | Fechado |

Recomendações

1. Aumentar cobertura de testes para o módulo de Pagamento

2. Implementar testes de regressão automatizados

3. Melhorar testes de compatibilidade com navegadores

4. Realizar teste de carga antes da próxima release

Assinado por

QA Lead: João Silva

Data: 2025-03-15

6.4. Integração com Ferramentas de Teste

O Jira pode ser integrado com ferramentas de automação para criar issues
automaticamente quando testes falham.

Exemplo de Integração Cypress + Jira:

// cypress/plugins/index.js

const axios = require('axios');

module.exports = (on, config) => {

 on('task', {

 createJiraIssue(data) {

 const jiraUrl = 'https://seu-jira.atlassian.net/rest/api/3/issue';

 const auth = Buffer.from('seu-email@example.com:seu-token-

api').toString('base64');

 return axios.post(jiraUrl, {

 fields: {

 project: { key: 'QA' },

 summary: data.title,

 description: data.description,

 issuetype: { name: 'Bug' },

 priority: { name: 'High' },

 labels: ['cypress', 'automated']

 }

 }, {

 headers: {

 'Authorization': `Basic ${auth}`,

 'Content-Type': 'application/json'

 }

 });

 }

 });

};

// cypress/e2e/login.cy.js

describe('Login Tests', () => {

 it('Should create Jira issue on failure', () => {

 cy.visit('https://example.com/login');

 cy.get('input[name="email"]').type('user@example.com');

 cy.get('input[name="password"]').type('senha123');

 cy.get('button[type="submit"]').click();

 cy.url().then(url => {

 if (!url.includes('/dashboard')) {

 cy.task('createJiraIssue', {

 title: 'Login test failed',

 description: 'Login button did not redirect to dashboard'

 });

 }

 });

 });

});

Capítulo 7: JavaScript e Cypress - Automação Web
Moderna

7.1. Fundamentos de JavaScript para QA

JavaScript é a linguagem de programação da web e é essencial para automação com
Cypress.

Conceitos Básicos

Variáveis e Tipos de Dados:

// Variáveis

let email = 'user@example.com'; // let (recomendado)

const password = 'senha123'; // const (imutável)

var username = 'João'; // var (evitar)

// Tipos de dados

let numero = 42; // Number

let texto = 'Hello'; // String

let booleano = true; // Boolean

let nulo = null; // Null

let indefinido; // Undefined

let objeto = { name: 'João' }; // Object

let array = [1, 2, 3]; // Array

Operadores:

// Aritméticos

10 + 5; // 15

10 - 5; // 5

10 * 5; // 50

10 / 5; // 2

10 % 3; // 1 (resto da divisão)

// Comparação

5 == '5'; // true (comparação de valor)

5 === '5'; // false (comparação de tipo e valor)

5 != '5'; // false

5 !== '5'; // true

5 > 3; // true

5 < 3; // false

5 >= 5; // true

5 <= 5; // true

// Lógicos

true && false; // false (AND)

true || false; // true (OR)

!true; // false (NOT)

Estruturas de Controle:

// if/else

if (idade >= 18) {

 console.log('Maior de idade');

} else if (idade >= 13) {

 console.log('Adolescente');

} else {

 console.log('Criança');

}

// switch

switch (dia) {

 case 'segunda':

 console.log('Início da semana');

 break;

 case 'sexta':

 console.log('Quase fim de semana');

 break;

 default:

 console.log('Dia comum');

}

// for

for (let i = 0; i < 5; i++) {

 console.log(i); // 0, 1, 2, 3, 4

}

// while

let contador = 0;

while (contador < 5) {

 console.log(contador);

 contador++;

}

// forEach

const numeros = [1, 2, 3];

numeros.forEach(num => {

 console.log(num);

});

Funções:

// Função básica

function saudacao(nome) {

 return `Olá, ${nome}!`;

}

console.log(saudacao('João')); // "Olá, João!"

// Arrow function (moderna)

const saudacao2 = (nome) => {

 return `Olá, ${nome}!`;

};

// Arrow function (simplificada)

const saudacao3 = nome => `Olá, ${nome}!`;

// Função com múltiplos parâmetros

function calcular(a, b, operacao) {

 if (operacao === '+') return a + b;

 if (operacao === '-') return a - b;

 if (operacao === '*') return a * b;

 if (operacao === '/') return a / b;

}

console.log(calcular(10, 5, '+')); // 15

Objetos e Arrays:

// Objeto

const usuario = {

 nome: 'João',

 email: 'joao@example.com',

 idade: 30,

 endereco: {

 rua: 'Rua A',

 cidade: 'São Paulo'

 }

};

// Acessando propriedades

console.log(usuario.nome); // "João"

console.log(usuario['email']); // "joao@example.com"

console.log(usuario.endereco.cidade); // "São Paulo"

// Array

const numeros = [1, 2, 3, 4, 5];

console.log(numeros[0]); // 1

console.log(numeros.length); // 5

// Métodos de Array

numeros.push(6); // [1, 2, 3, 4, 5, 6]

numeros.pop(); // [1, 2, 3, 4, 5]

numeros.map(n => n * 2); // [2, 4, 6, 8, 10]

numeros.filter(n => n > 2); // [3, 4, 5]

7.2. Introdução ao Cypress

O que é Cypress?

Cypress é um framework de teste end-to-end (E2E) moderno, desenvolvido
especificamente para testes de aplicações web. Ele oferece uma experiência de teste
superior com:

Execução rápida e confiável

Interface visual intuitiva

Debugging fácil

Documentação excelente

Instalação:

Criar projeto Node.js

npm init -y

Instalar Cypress

npm install --save-dev cypress

Abrir Cypress

npx cypress open

Estrutura de Projeto:

projeto/

├── cypress/

│ ├── e2e/ # Testes E2E

│ │ └── login.cy.js

│ ├── support/ # Arquivos de suporte

│ │ ├── commands.js

│ │ └── e2e.js

│ └── fixtures/ # Dados de teste

│ └── users.json

├── cypress.config.js # Configuração do Cypress

└── package.json

7.3. Seletores e Localizadores

Seletores CSS:

// Por ID

cy.get('#login-button')

// Por classe

cy.get('.error-message')

// Por atributo

cy.get('input[type="email"]')

cy.get('button[data-testid="submit"]')

// Por tag

cy.get('button')

// Combinações

cy.get('form input[type="email"]')

cy.get('.container > .button')

Seletores XPath:

// XPath (menos recomendado, mas possível)

cy.xpath('//button[@id="login-button"]')

cy.xpath('//input[@type="email"]')

cy.xpath('//div[contains(text(), "Error")]')

Melhores Práticas:

// ✓ BOM: Usar data-testid

cy.get('[data-testid="email-input"]').type('user@example.com');

// ✗ RUIM: Usar seletores frágeis

cy.get('input:nth-child(2)').type('user@example.com');

// ✓ BOM: Usar get com texto

cy.contains('button', 'Login').click();

// ✗ RUIM: Usar seletores muito específicos

cy.get('body > div:nth-child(1) > form > input:nth-child(2)');

7.4. Exemplos de Scripts Cypress

Exemplo 1: Teste de Login

// cypress/e2e/login.cy.js

describe('Login Tests', () => {

 beforeEach(() => {

 cy.visit('https://example.com/login');

 });

 it('Should login successfully with valid credentials', () => {

 cy.get('[data-testid="email-input"]')

 .type('user@example.com');

 cy.get('[data-testid="password-input"]')

 .type('senha123');

 cy.get('[data-testid="login-button"]')

 .click();

 cy.url().should('include', '/dashboard');

 cy.get('[data-testid="user-name"]')

 .should('contain', 'João Silva');

 });

 it('Should show error with invalid email', () => {

 cy.get('[data-testid="email-input"]')

 .type('invalido@example.com');

 cy.get('[data-testid="password-input"]')

 .type('senha123');

 cy.get('[data-testid="login-button"]')

 .click();

 cy.get('[data-testid="error-message"]')

 .should('contain', 'Email ou senha incorretos');

 });

 it('Should show error with invalid password', () => {

 cy.get('[data-testid="email-input"]')

 .type('user@example.com');

 cy.get('[data-testid="password-input"]')

 .type('senhaerrada');

 cy.get('[data-testid="login-button"]')

 .click();

 cy.get('[data-testid="error-message"]')

 .should('contain', 'Email ou senha incorretos');

 });

 it('Should require email field', () => {

 cy.get('[data-testid="password-input"]')

 .type('senha123');

 cy.get('[data-testid="login-button"]')

 .click();

 cy.get('[data-testid="email-error"]')

 .should('contain', 'Email é obrigatório');

 });

});

Exemplo 2: Teste de Carrinho de Compras

// cypress/e2e/shopping-cart.cy.js

describe('Shopping Cart Tests', () => {

 beforeEach(() => {

 cy.visit('https://example.com');

 cy.login('user@example.com', 'senha123');

 });

 it('Should add item to cart', () => {

 cy.get('[data-testid="product-1"]')

 .click();

 cy.get('[data-testid="add-to-cart-button"]')

 .click();

 cy.get('[data-testid="cart-count"]')

 .should('contain', '1');

 cy.get('[data-testid="success-message"]')

 .should('contain', 'Produto adicionado ao carrinho');

 });

 it('Should remove item from cart', () => {

 // Adicionar item

 cy.get('[data-testid="product-1"]').click();

 cy.get('[data-testid="add-to-cart-button"]').click();

 // Ir para carrinho

 cy.get('[data-testid="cart-link"]').click();

 // Remover item

 cy.get('[data-testid="remove-button"]').click();

 cy.get('[data-testid="empty-cart-message"]')

 .should('contain', 'Seu carrinho está vazio');

 });

 it('Should apply discount coupon', () => {

 // Adicionar item

 cy.get('[data-testid="product-1"]').click();

 cy.get('[data-testid="add-to-cart-button"]').click();

 // Ir para carrinho

 cy.get('[data-testid="cart-link"]').click();

 // Aplicar cupom

 cy.get('[data-testid="coupon-input"]')

 .type('DESCONTO10');

 cy.get('[data-testid="apply-coupon-button"]')

 .click();

 cy.get('[data-testid="discount-message"]')

 .should('contain', '10% de desconto aplicado');

 // Verificar que o total foi reduzido

 cy.get('[data-testid="total-price"]')

 .should('contain', 'R$ 90,00');

 });

 it('Should update item quantity', () => {

 // Adicionar item

 cy.get('[data-testid="product-1"]').click();

 cy.get('[data-testid="add-to-cart-button"]').click();

 // Ir para carrinho

 cy.get('[data-testid="cart-link"]').click();

 // Aumentar quantidade

 cy.get('[data-testid="quantity-input"]')

 .clear()

 .type('3');

 cy.get('[data-testid="update-button"]')

 .click();

 cy.get('[data-testid="total-price"]')

 .should('contain', 'R$ 300,00');

 });

});

Exemplo 3: Teste com Dados Dinâmicos

// cypress/fixtures/users.json

[

 {

 "email": "user1@example.com",

 "password": "senha123",

 "name": "Usuário 1"

 },

 {

 "email": "user2@example.com",

 "password": "senha456",

 "name": "Usuário 2"

 }

]

// cypress/e2e/dynamic-tests.cy.js

describe('Dynamic Login Tests', () => {

 beforeEach(() => {

 cy.fixture('users').as('users');

 });

 it('Should login with multiple users', function() {

 this.users.forEach(user => {

 cy.visit('https://example.com/login');

 cy.get('[data-testid="email-input"]')

 .type(user.email);

 cy.get('[data-testid="password-input"]')

 .type(user.password);

 cy.get('[data-testid="login-button"]')

 .click();

 cy.url().should('include', '/dashboard');

 cy.get('[data-testid="user-name"]')

 .should('contain', user.name);

 // Logout

 cy.get('[data-testid="logout-button"]')

 .click();

 });

 });

});

7.5. Boas Práticas e Padrões

Page Object Model (POM):

O Page Object Model é um padrão de design que melhora a manutenibilidade dos
testes.

// cypress/support/pages/LoginPage.js

class LoginPage {

 visit() {

 cy.visit('https://example.com/login');

 }

 fillEmail(email) {

 cy.get('[data-testid="email-input"]').type(email);

 return this;

 }

 fillPassword(password) {

 cy.get('[data-testid="password-input"]').type(password);

 return this;

 }

 clickLoginButton() {

 cy.get('[data-testid="login-button"]').click();

 return this;

 }

 getErrorMessage() {

 return cy.get('[data-testid="error-message"]');

 }

 login(email, password) {

 this.fillEmail(email);

 this.fillPassword(password);

 this.clickLoginButton();

 return this;

 }

}

export default new LoginPage();

// cypress/e2e/login-pom.cy.js

import LoginPage from '../support/pages/LoginPage';

describe('Login Tests with POM', () => {

 beforeEach(() => {

 LoginPage.visit();

 });

 it('Should login successfully', () => {

 LoginPage.login('user@example.com', 'senha123');

 cy.url().should('include', '/dashboard');

 });

 it('Should show error with invalid credentials', () => {

 LoginPage.login('invalid@example.com', 'wrongpassword');

 LoginPage.getErrorMessage()

 .should('contain', 'Email ou senha incorretos');

 });

});

Custom Commands:

// cypress/support/commands.js

Cypress.Commands.add('login', (email, password) => {

 cy.visit('https://example.com/login');

 cy.get('[data-testid="email-input"]').type(email);

 cy.get('[data-testid="password-input"]').type(password);

 cy.get('[data-testid="login-button"]').click();

 cy.url().should('include', '/dashboard');

});

Cypress.Commands.add('logout', () => {

 cy.get('[data-testid="logout-button"]').click();

 cy.url().should('include', '/login');

});

// Uso nos testes

describe('Tests with Custom Commands', () => {

 it('Should use custom login command', () => {

 cy.login('user@example.com', 'senha123');

 cy.get('[data-testid="user-name"]').should('be.visible');

 });

 it('Should use custom logout command', () => {

 cy.login('user@example.com', 'senha123');

 cy.logout();

 });

});

Capítulo 8: Python e Robot Framework - Automação
Versátil

8.1. Fundamentos de Python para QA

Python é uma linguagem poderosa e versátil para automação de testes.

Conceitos Básicos

Variáveis e Tipos de Dados:

Variáveis

email = 'user@example.com'

password = 'senha123'

idade = 30

altura = 1.75

ativo = True

Tipos de dados

type(email) # <class 'str'>

type(idade) # <class 'int'>

type(altura) # <class 'float'>

type(ativo) # <class 'bool'>

Conversão de tipos

str(idade) # '30'

int('30') # 30

float('1.75') # 1.75

bool(1) # True

Strings:

Concatenação

nome = 'João'

sobrenome = 'Silva'

nome_completo = nome + ' ' + sobrenome

f-strings (recomendado)

mensagem = f'Olá, {nome}!'

print(mensagem) # 'Olá, João!'

Métodos de string

texto = 'Hello World'

texto.lower() # 'hello world'

texto.upper() # 'HELLO WORLD'

texto.replace('World', 'Python') # 'Hello Python'

texto.split() # ['Hello', 'World']

Listas:

Criação

numeros = [1, 2, 3, 4, 5]

nomes = ['João', 'Maria', 'Pedro']

Acesso

numeros[0] # 1

numeros[-1] # 5 (último elemento)

numeros[1:3] # [2, 3] (slice)

Métodos

numeros.append(6) # [1, 2, 3, 4, 5, 6]

numeros.remove(3) # [1, 2, 4, 5, 6]

len(numeros) # 5

Dicionários:

Criação

usuario = {

 'nome': 'João',

 'email': 'joao@example.com',

 'idade': 30

}

Acesso

usuario['nome'] # 'João'

usuario.get('email') # 'joao@example.com'

Adição

usuario['telefone'] = '123456789'

Iteração

for chave, valor in usuario.items():

 print(f'{chave}: {valor}')

Estruturas de Controle:

if/elif/else

idade = 20

if idade >= 18:

 print('Maior de idade')

elif idade >= 13:

 print('Adolescente')

else:

 print('Criança')

for

for i in range(5):

 print(i) # 0, 1, 2, 3, 4

while

contador = 0

while contador < 5:

 print(contador)

 contador += 1

List comprehension

numeros = [1, 2, 3, 4, 5]

pares = [n for n in numeros if n % 2 == 0]

print(pares) # [2, 4]

Funções:

Função básica

def saudacao(nome):

 return f'Olá, {nome}!'

print(saudacao('João')) # 'Olá, João!'

Função com múltiplos parâmetros

def calcular(a, b, operacao='+'):

 if operacao == '+':

 return a + b

 elif operacao == '-':

 return a - b

 elif operacao == '*':

 return a * b

 elif operacao == '/':

 return a / b

print(calcular(10, 5)) # 15

print(calcular(10, 5, '-')) # 5

Função com *args e **kwargs

def funcao_flexivel(*args, **kwargs):

 print(args) # tupla de argumentos

 print(kwargs) # dicionário de argumentos nomeados

funcao_flexivel(1, 2, 3, nome='João', idade=30)

(1, 2, 3)

{'nome': 'João', 'idade': 30}

8.2. Introdução ao Robot Framework

O que é Robot Framework?

Robot Framework é um framework de automação de testes genérico e extensível,
baseado em Python, que usa uma sintaxe simples e legível em linguagem natural.

Instalação:

Instalar Robot Framework

pip install robotframework

Instalar SeleniumLibrary (para testes web)

pip install robotframework-seleniumlibrary

Instalar RequestsLibrary (para testes de API)

pip install robotframework-requestslibrary

Instalar DatabaseLibrary (para testes de banco de dados)

pip install robotframework-databaselibrary

Estrutura de Projeto:

projeto/

├── tests/

│ ├── login.robot

│ ├── carrinho.robot

│ └── pagamento.robot

├── resources/

│ ├── keywords.robot

│ └── variables.robot

├── results/

│ ├── report.html

│ ├── log.html

│ └── output.xml

└── robot.ini

8.3. Bibliotecas Essenciais

Biblioteca Uso Exemplo

SeleniumLibrary Automação de testes web
Open Browser , Click Button , Input
Text

RequestsLibrary Testes de API REST GET , POST , PUT , DELETE

DatabaseLibrary Testes de banco de dados
Connect To Database , Query ,
Execute SQL

BuiltIn Funções nativas Log , Sleep , Should Be Equal

Collections
Manipulação de listas e
dicionários

Append To List , Get From
Dictionary

String Manipulação de strings Get Substring , Replace String

8.4. Exemplos de Scripts Robot Framework

Exemplo 1: Teste de Login

*** Settings ***

Library SeleniumLibrary

*** Variables ***

${BROWSER} Chrome

${URL} https://example.com/login

${EMAIL} user@example.com

${PASSWORD} senha123

${EMAIL_INPUT} [data-testid="email-input"]

${PASSWORD_INPUT} [data-testid="password-input"]

${LOGIN_BUTTON} [data-testid="login-button"]

*** Test Cases ***

Test Login With Valid Credentials

 Open Browser ${URL} ${BROWSER}

 Input Text ${EMAIL_INPUT} ${EMAIL}

 Input Text ${PASSWORD_INPUT} ${PASSWORD}

 Click Button ${LOGIN_BUTTON}

 Location Should Contain /dashboard

 Close Browser

Test Login With Invalid Email

 Open Browser ${URL} ${BROWSER}

 Input Text ${EMAIL_INPUT} invalid@example.com

 Input Text ${PASSWORD_INPUT} ${PASSWORD}

 Click Button ${LOGIN_BUTTON}

 Page Should Contain Email ou senha incorretos

 Close Browser

Test Login With Invalid Password

 Open Browser ${URL} ${BROWSER}

 Input Text ${EMAIL_INPUT} ${EMAIL}

 Input Text ${PASSWORD_INPUT} wrongpassword

 Click Button ${LOGIN_BUTTON}

 Page Should Contain Email ou senha incorretos

 Close Browser

*** Keywords ***

Login With Credentials

 [Arguments] ${email} ${password}

 Open Browser ${URL} ${BROWSER}

 Input Text ${EMAIL_INPUT} ${email}

 Input Text ${PASSWORD_INPUT} ${password}

 Click Button ${LOGIN_BUTTON}

Exemplo 2: Teste de API com RequestsLibrary

*** Settings ***

Library RequestsLibrary

Library Collections

*** Variables ***

${BASE_URL} https://api.example.com

${USER_EMAIL} user@example.com

${USER_PASSWORD} senha123

*** Test Cases ***

Test Get Users

 ${response}= GET ${BASE_URL}/users

 Should Be Equal As Integers ${response.status_code} 200

 Should Contain ${response.text} user@example.com

Test Create User

 ${data}= Create Dictionary

 ... email=newuser@example.com

 ... password=senha123

 ... name=New User

 ${response}= POST ${BASE_URL}/users

 ... json=${data}

 Should Be Equal As Integers ${response.status_code} 201

 Should Contain ${response.text} newuser@example.com

Test Update User

 ${data}= Create Dictionary

 ... name=Updated Name

 ${response}= PUT ${BASE_URL}/users/1

 ... json=${data}

 Should Be Equal As Integers ${response.status_code} 200

Test Delete User

 ${response}= DELETE ${BASE_URL}/users/1

 Should Be Equal As Integers ${response.status_code} 204

Test Login API

 ${data}= Create Dictionary

 ... email=${USER_EMAIL}

 ... password=${USER_PASSWORD}

 ${response}= POST ${BASE_URL}/login

 ... json=${data}

 Should Be Equal As Integers ${response.status_code} 200

 Should Contain ${response.text} token

8.5. Integração com CI/CD

Executar Robot Framework em CI/CD:

Executar todos os testes

robot tests/

Executar teste específico

robot tests/login.robot

Executar com tags

robot --include smoke tests/

Gerar relatório

robot --outputdir results tests/

Exemplo com GitHub Actions:

.github/workflows/robot-tests.yml

name: Robot Framework Tests

on: [push, pull_request]

jobs:

 test:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Set up Python

 uses: actions/setup-python@v2

 with:

 python-version: 3.9

 - name: Install dependencies

 run: |

 pip install robotframework

 pip install robotframework-seleniumlibrary

 pip install robotframework-requestslibrary

 - name: Run Robot Framework tests

 run: robot --outputdir results tests/

 - name: Upload results

 if: always()

 uses: actions/upload-artifact@v2

 with:

 name: robot-results

 path: results/

Capítulo 9: Testes de API - A Espinha Dorsal do
Software

9.1. Fundamentos de REST e HTTP

O que é REST?

REST (Representational State Transfer) é um estilo arquitetural para projetar
aplicações de rede. Ele usa HTTP como protocolo de comunicação e é baseado em
recursos.

Conceitos Principais:

Recursos: Entidades que podem ser manipuladas (usuários, produtos, pedidos)

Métodos HTTP: Ações que podem ser realizadas nos recursos

Representações: Formato dos dados (JSON, XML)

Stateless: Cada requisição contém todas as informações necessárias

9.2. Métodos HTTP e Códigos de Status

Métodos HTTP:

Método Descrição Exemplo Idempotente

GET Recuperar dados GET /users/1 Sim

POST Criar novo recurso POST /users Não

PUT Atualizar recurso existente PUT /users/1 Sim

PATCH Atualização parcial PATCH /users/1 Não

DELETE Deletar recurso DELETE /users/1 Sim

HEAD Como GET, mas sem corpo HEAD /users Sim

OPTIONS Descrever opções de comunicação OPTIONS /users Sim

Códigos de Status HTTP:

Código Categoria Significado Exemplo

200 2xx (Sucesso) OK - Requisição bem-sucedida GET /users retorna 200

201 2xx (Sucesso) Created - Recurso criado POST /users retorna 201

204 2xx (Sucesso)
No Content - Sem corpo na
resposta

DELETE /users/1 retorna
204

400
4xx (Erro do
Cliente)

Bad Request - Requisição
inválida

POST /users com dados
inválidos

401
4xx (Erro do
Cliente)

Unauthorized - Autenticação
necessária

GET /users sem token

403
4xx (Erro do
Cliente)

Forbidden - Acesso negado GET /admin sem permissão

404
4xx (Erro do
Cliente)

Not Found - Recurso não
encontrado

GET /users/999

500
5xx (Erro do
Servidor)

Internal Server Error Erro no servidor

503
5xx (Erro do
Servidor)

Service Unavailable Servidor em manutenção

9.3. Postman - Testes de API Manuais

O que é Postman?

Postman é uma ferramenta popular para testar, documentar e monitorar APIs. Permite
criar requisições HTTP de forma visual e organizar testes em coleções.

Instalação:

1. Baixar em https://www.postman.com/downloads/

2. Criar conta gratuita

3. Abrir aplicação

Estrutura Básica:

https://www.postman.com/downloads/

Workspace

├── Collections

│ ├── User API

│ │ ├── GET /users

│ │ ├── POST /users

│ │ ├── PUT /users/:id

│ │ └── DELETE /users/:id

│ └── Product API

│ ├── GET /products

│ └── POST /products

└── Environments

 ├── Development

 ├── Staging

 └── Production

Exemplo de Requisição GET:

GET https://api.example.com/users/1

Headers:

Authorization: Bearer token123

Content-Type: application/json

Response:

{

 "id": 1,

 "name": "João Silva",

 "email": "joao@example.com",

 "age": 30

}

Exemplo de Requisição POST:

POST https://api.example.com/users

Headers:

Content-Type: application/json

Body:

{

 "name": "Maria Silva",

 "email": "maria@example.com",

 "age": 28

}

Response:

{

 "id": 2,

 "name": "Maria Silva",

 "email": "maria@example.com",

 "age": 28,

 "createdAt": "2025-03-01T10:00:00Z"

}

9.4. Automação de Testes de API

Exemplo com Python e Requests:

import requests

import json

URL base da API

BASE_URL = 'https://api.example.com'

Headers

HEADERS = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer token123'

}

Teste GET

def test_get_user():

 response = requests.get(f'{BASE_URL}/users/1', headers=HEADERS)

 assert response.status_code == 200

 data = response.json()

 assert data['id'] == 1

 assert data['name'] == 'João Silva'

 print('✓ GET /users/1 passou')

Teste POST

def test_create_user():

 payload = {

 'name': 'Maria Silva',

 'email': 'maria@example.com',

 'age': 28

 }

 response = requests.post(f'{BASE_URL}/users', json=payload,

headers=HEADERS)

 assert response.status_code == 201

 data = response.json()

 assert data['name'] == 'Maria Silva'

 print('✓ POST /users passou')

Teste PUT

def test_update_user():

 payload = {

 'name': 'João Silva Atualizado'

 }

 response = requests.put(f'{BASE_URL}/users/1', json=payload,

headers=HEADERS)

 assert response.status_code == 200

 data = response.json()

 assert data['name'] == 'João Silva Atualizado'

 print('✓ PUT /users/1 passou')

Teste DELETE

def test_delete_user():

 response = requests.delete(f'{BASE_URL}/users/1', headers=HEADERS)

 assert response.status_code == 204

 print('✓ DELETE /users/1 passou')

Executar testes

if __name__ == '__main__':

 test_get_user()

 test_create_user()

 test_update_user()

 test_delete_user()

 print('\n✓ Todos os testes passaram!')

Exemplo com Cypress:

// cypress/e2e/api-tests.cy.js

describe('API Tests', () => {

 const BASE_URL = 'https://api.example.com';

 it('Should GET user successfully', () => {

 cy.request('GET', `${BASE_URL}/users/1`)

 .then(response => {

 expect(response.status).to.equal(200);

 expect(response.body).to.have.property('id', 1);

 expect(response.body).to.have.property('name', 'João Silva');

 });

 });

 it('Should POST user successfully', () => {

 const payload = {

 name: 'Maria Silva',

 email: 'maria@example.com',

 age: 28

 };

 cy.request('POST', `${BASE_URL}/users`, payload)

 .then(response => {

 expect(response.status).to.equal(201);

 expect(response.body).to.have.property('name', 'Maria Silva');

 });

 });

 it('Should PUT user successfully', () => {

 const payload = {

 name: 'João Silva Atualizado'

 };

 cy.request('PUT', `${BASE_URL}/users/1`, payload)

 .then(response => {

 expect(response.status).to.equal(200);

 expect(response.body).to.have.property('name', 'João Silva

Atualizado');

 });

 });

 it('Should DELETE user successfully', () => {

 cy.request('DELETE', `${BASE_URL}/users/1`)

 .then(response => {

 expect(response.status).to.equal(204);

 });

 });

});

9.5. Validação de Respostas JSON

Estrutura JSON:

{

 "id": 1,

 "name": "João Silva",

 "email": "joao@example.com",

 "age": 30,

 "ativo": true,

 "endereco": {

 "rua": "Rua A",

 "cidade": "São Paulo",

 "cep": "01234-567"

 },

 "telefones": [

 "11987654321",

 "1133334444"

]

}

Validação em Python:

import requests

import json

response = requests.get('https://api.example.com/users/1')

data = response.json()

Validar estrutura

assert 'id' in data

assert 'name' in data

assert 'email' in data

Validar tipos

assert isinstance(data['id'], int)

assert isinstance(data['name'], str)

assert isinstance(data['ativo'], bool)

Validar valores

assert data['id'] == 1

assert data['name'] == 'João Silva'

assert data['age'] > 0

Validar objetos aninhados

assert data['endereco']['cidade'] == 'São Paulo'

Validar arrays

assert len(data['telefones']) == 2

assert '11987654321' in data['telefones']

print('✓ Todas as validações passaram!')

Validação em Cypress:

cy.request('GET', 'https://api.example.com/users/1')

 .then(response => {

 // Validar status

 expect(response.status).to.equal(200);

 // Validar estrutura

 expect(response.body).to.have.property('id');

 expect(response.body).to.have.property('name');

 expect(response.body).to.have.property('email');

 // Validar tipos

 expect(response.body.id).to.be.a('number');

 expect(response.body.name).to.be.a('string');

 expect(response.body.ativo).to.be.a('boolean');

 // Validar valores

 expect(response.body.id).to.equal(1);

 expect(response.body.name).to.equal('João Silva');

 expect(response.body.age).to.be.greaterThan(0);

 // Validar objetos aninhados

 expect(response.body.endereco.cidade).to.equal('São Paulo');

 // Validar arrays

 expect(response.body.telefones).to.have.length(2);

 expect(response.body.telefones).to.include('11987654321');

 });

Capítulo 10: Bash, Linux e Terminal - Ambiente do QA

10.1. Comandos Essenciais de Terminal

Navegação de Diretórios:

Mostrar diretório atual

pwd

Listar arquivos

ls

ls -la # Com detalhes

ls -lh # Com tamanho legível

Mudar de diretório

cd /home/ubuntu

cd .. # Diretório pai

cd ~ # Home directory

cd - # Diretório anterior

Criar diretório

mkdir projeto

mkdir -p projeto/src/main # Criar hierarquia

Remover diretório

rmdir projeto # Vazio

rm -rf projeto # Com conteúdo

Manipulação de Arquivos:

Criar arquivo vazio

touch arquivo.txt

Copiar arquivo

cp arquivo.txt cópia.txt

cp -r pasta/ cópia_pasta/ # Recursivo

Mover/renomear

mv arquivo.txt novo_nome.txt

mv arquivo.txt /caminho/destino/

Remover arquivo

rm arquivo.txt

rm -f arquivo.txt # Forçar

Visualizar conteúdo

cat arquivo.txt # Mostrar tudo

head -n 10 arquivo.txt # Primeiras 10 linhas

tail -n 10 arquivo.txt # Últimas 10 linhas

less arquivo.txt # Paginado (q para sair)

10.2. Análise de Logs

Comandos Essenciais:

Monitorar log em tempo real

tail -f /var/log/application.log

Buscar padrão em arquivo

grep "ERROR" /var/log/application.log

Contar ocorrências

grep -c "ERROR" /var/log/application.log

Mostrar contexto

grep -A 5 "ERROR" /var/log/application.log # 5 linhas depois

grep -B 5 "ERROR" /var/log/application.log # 5 linhas antes

grep -C 5 "ERROR" /var/log/application.log # 5 linhas antes e depois

Busca case-insensitive

grep -i "error" /var/log/application.log

Expressão regular

grep "ERROR.*timeout" /var/log/application.log

Múltiplos arquivos

grep "ERROR" /var/log/*.log

Inverter busca (não contém)

grep -v "INFO" /var/log/application.log

Exemplo Prático:

Encontrar todos os erros no último dia

tail -f /var/log/app.log | grep "ERROR"

Contar erros por tipo

grep "ERROR" /var/log/app.log | grep -o "ERROR.*" | sort | uniq -c

Encontrar erros de timeout

grep "ERROR.*timeout" /var/log/app.log | tail -20

Salvar erros em arquivo

grep "ERROR" /var/log/app.log > erros.txt

10.3. Conectividade e Rede

Comandos Essenciais:

Testar conectividade

ping google.com

ping -c 4 google.com # 4 pacotes

Verificar porta aberta

telnet example.com 80

nc -zv example.com 80 # netcat

Fazer requisição HTTP

curl https://example.com

curl -X POST https://example.com/api/users \

 -H "Content-Type: application/json" \

 -d '{"name":"João"}'

Salvar resposta em arquivo

curl https://example.com > resposta.html

Mostrar headers

curl -i https://example.com

Seguir redirecionamentos

curl -L https://example.com

Informações de DNS

nslookup example.com

dig example.com

Informações de rede

ifconfig # IP local

netstat -an # Conexões ativas

ss -an # Alternativa moderna

Exemplo Prático:

Testar API

curl -X GET https://api.example.com/users/1 \

 -H "Authorization: Bearer token123" \

 -H "Content-Type: application/json"

Criar usuário via API

curl -X POST https://api.example.com/users \

 -H "Content-Type: application/json" \

 -d '{

 "name": "João Silva",

 "email": "joao@example.com"

 }'

Verificar se servidor está respondendo

curl -s -o /dev/null -w "%{http_code}" https://example.com

10.4. Automação com Scripts Bash

Script Básico:

#!/bin/bash

Variáveis

NOME="João"

IDADE=30

Imprimir

echo "Olá, $NOME"

echo "Sua idade é: $IDADE"

Condicionais

if [$IDADE -ge 18]; then

 echo "Você é maior de idade"

else

 echo "Você é menor de idade"

fi

Loops

for i in {1..5}; do

 echo "Número: $i"

done

Funções

function saudacao() {

 echo "Olá, $1!"

}

saudacao "Maria"

Script para Testes:

#!/bin/bash

Script para executar testes automaticamente

API_URL="https://api.example.com"

LOG_FILE="test_results.log"

Função para testar endpoint

test_endpoint() {

 local method=$1

 local endpoint=$2

 local expected_code=$3

 echo "Testando: $method $endpoint"

 response=$(curl -s -o /dev/null -w "%{http_code}" -X $method

"API_URLendpoint")

 if ["$response" -eq "$expected_code"]; then

 echo "✓ PASSOU: $method $endpoint (HTTP $response)" >> $LOG_FILE

 return 0

 else

 echo "✗ FALHOU: $method $endpoint (esperado $expected_code, obteve

$response)" >> $LOG_FILE

 return 1

 fi

}

Executar testes

test_endpoint "GET" "/users" 200

test_endpoint "GET" "/users/1" 200

test_endpoint "POST" "/users" 201

test_endpoint "GET" "/users/999" 404

Resumo

echo ""

echo "Testes concluídos. Verifique $LOG_FILE"

10.5. Gerenciamento de Processos

Comandos Essenciais:

Listar processos

ps aux # Todos os processos

ps aux | grep java # Processos Java

Monitorar sistema em tempo real

top

htop # Alternativa mais amigável

Matar processo

kill 1234 # Sinal TERM

kill -9 1234 # Sinal KILL (forçado)

Executar em background

./script.sh &

Executar em background com nohup (continua após logout)

nohup ./script.sh &

Ver jobs em background

jobs

Trazer para foreground

fg %1

Pausar/retomar

Ctrl+Z # Pausar

bg # Retomar em background

Exemplo Prático:

Executar testes em background

nohup npm test > test_results.log 2>&1 &

Monitorar progresso

tail -f test_results.log

Verificar se processo ainda está rodando

ps aux | grep npm

Matar processo se necessário

pkill -f "npm test"

PARTE IV: CARREIRA E
DESENVOLVIMENTO PROFISSIONAL

Capítulo 12: Construindo um Portfólio Vencedor

12.1. Componentes Essenciais do Portfólio

Um portfólio profissional de QA deve demonstrar suas habilidades práticas e
conhecimento teórico.

Componentes Principais:

1. GitHub Repositories

Projetos de automação com código limpo

README documentado

Histórico de commits bem estruturado

Testes funcionando

2. Documentação

Planos de Teste

Casos de Teste

Relatórios de Teste

Estudos de Caso

3. Certificações

ISTQB Foundation

Cypress Certified

Cursos reconhecidos

4. LinkedIn Profile

Foto profissional

Resumo detalhado

Recomendações

Histórico de experiência

5. Blog/Medium

Artigos sobre QA

Tutoriais de ferramentas

Compartilhamento de conhecimento

12.2. Projetos de Automação

Projeto 1: Automação Web com Cypress

cypress-ecommerce-tests/

├── cypress/

│ ├── e2e/

│ │ ├── login.cy.js

│ │ ├── shopping-cart.cy.js

│ │ ├── checkout.cy.js

│ │ └── payment.cy.js

│ ├── support/

│ │ ├── commands.js

│ │ └── e2e.js

│ └── fixtures/

│ ├── users.json

│ └── products.json

├── cypress.config.js

├── README.md

└── package.json

Projeto 2: Automação com Robot Framework

robot-api-tests/

├── tests/

│ ├── user_api.robot

│ ├── product_api.robot

│ └── order_api.robot

├── resources/

│ ├── keywords.robot

│ └── variables.robot

├── results/

│ ├── report.html

│ ├── log.html

│ └── output.xml

├── README.md

└── robot.ini

Projeto 3: Testes de API com Python

python-api-tests/

├── tests/

│ ├── test_users.py

│ ├── test_products.py

│ └── test_orders.py

├── fixtures/

│ ├── users.json

│ └── products.json

├── requirements.txt

├── pytest.ini

├── README.md

└── conftest.py

12.3. Documentação e Estudos de Caso

Estudo de Caso: Teste de E-commerce

Estudo de Caso: Teste de E-commerce

Objetivo

Testar o fluxo completo de compra de um e-commerce, desde o login até o

pagamento.

Escopo

- Login e autenticação

- Busca e filtro de produtos

- Adição ao carrinho

- Aplicação de cupom

- Checkout

- Pagamento

Estratégia

- 70% Automação (Cypress)

- 30% Manual (Exploratório)

Resultados

- 150 casos de teste criados

- 145 executados (96.7%)

- 12 bugs encontrados

- Taxa de sucesso: 92%

Bugs Encontrados

1. Login não funciona em Safari (Crítico)

2. Carrinho não persiste após logout (Crítico)

3. Cupom não aplica desconto correto (Alta)

Recomendações

1. Implementar testes de compatibilidade com navegadores

2. Aumentar cobertura de testes para módulo de pagamento

3. Automatizar testes de regressão

12.4. GitHub e Versionamento

Estrutura de Repositório:

projeto-qa/

├── .github/

│ └── workflows/

│ └── tests.yml

├── .gitignore

├── README.md

├── cypress/

├── tests/

├── docs/

├── package.json

└── LICENSE

README.md Profissional:

Projeto de Testes Automatizados - E-commerce

Descrição

Suite de testes automatizados para validar funcionalidades críticas de um e-

commerce, incluindo login, carrinho de compras, checkout e pagamento.

Tecnologias

- **Cypress** para testes E2E

- **JavaScript** para scripts

- **GitHub Actions** para CI/CD

- **Postman** para testes de API

Instalação

```bash

npm install

npx cypress open



Executar Testes

# Todos os testes

npm test

# Teste específico

npm test -- --spec cypress/e2e/login.cy.js

# Com tags

npm test -- --env tags=smoke

Estrutura de Pastas

cypress/e2e/  - Testes E2E

cypress/support/  - Comandos customizados

cypress/fixtures/  - Dados de teste

docs/  - Documentação

Cobertura de Testes

Login: 40 casos

Carrinho: 60 casos

Pagamento: 50 casos

Total: 150 casos

Relatórios

Após executar os testes, abra cypress/reports/index.html

Contribuindo

1. Fork o projeto



2. Crie uma branch ( git checkout -b feature/nova-feature )

3. Commit suas mudanças ( git commit -am 'Adiciona nova feature' )

4. Push para a branch ( git push origin feature/nova-feature )

5. Abra um Pull Request

Autor

João Silva - QA Engineer

Licença

MIT

---

## Capítulo 13: Currículo e LinkedIn Profissional

### 13.1. Estrutura de um Currículo Vencedor

**Formato Recomendado:**

JOÃO SILVA São Paulo, SP | (11) 98765-4321 | joao.silva@example.com LinkedIn:
linkedin.com/in/joaosilva | GitHub: github.com/joaosilva

RESUMO PROFISSIONAL QA Engineer com 5 anos de experiência em automação de
testes, desenvolvimento de estratégias de qualidade e liderança de equipes.
Especialista em Cypress, Robot Framework e testes de API. Certificado ISTQB
Foundation.

EXPERIÊNCIA PROFISSIONAL

QA Engineer Senior - Tech Company (2022 - Presente)

Liderou equipe de 3 QAs em implementação de testes automatizados

Aumentou cobertura de testes de 60% para 85%



Reduziu tempo de regressão de 2 dias para 4 horas

Implementou CI/CD pipeline com GitHub Actions

QA Engineer - E-commerce Company (2020 - 2022)

Desenvolveu suite de testes com Cypress (150+ casos)

Implementou testes de API com Postman

Criou planos de teste e documentação

Colaborou com desenvolvedores em pair testing

QA Analyst - Startup (2018 - 2020)

Executou testes manuais e exploratórios

Reportou e rastreou defeitos no Jira

Participou de reuniões de requisitos

HABILIDADES TÉCNICAS

Ferramentas: Cypress, Robot Framework, Postman, Jira, Git

Linguagens: JavaScript, Python, Bash

Metodologias: Ágil, Scrum, Kanban

Testes: Funcional, Integração, API, Performance, Segurança

CERTIFICAÇÕES

ISTQB Foundation (2022)

Cypress Certified (2023)

EDUCAÇÃO

Bacharelado em Ciência da Computação - Universidade X (2018)

PROJETOS DESTACADOS

cypress-ecommerce-tests: Suite com 150+ testes E2E

robot-api-tests: Automação de API com Robot Framework

python-api-tests: Testes de API com Python e Pytest

”`



13.2. Palavras-Chave e Competências

Palavras-Chave Importantes:

Cypress

Robot Framework

Postman

Jira

Automação de Testes

Testes de API

Testes E2E

JavaScript

Python

Bash/Linux

CI/CD

GitHub Actions

Testes de Regressão

Testes Funcionais

Testes de Performance

ISTQB

Agile/Scrum

13.3. Otimização do Perfil LinkedIn

Seções Importantes:

1. Foto Profissional

Fundo neutro

Roupas profissionais

Boa iluminação

2. Headline



“QA Engineer | Automação com Cypress e Robot Framework | ISTQB
Certified”

3. Resumo

Descrever experiência e habilidades

Incluir links para GitHub e portfólio

Mencionar certificações

4. Experiência

Detalhar responsabilidades

Incluir métricas e resultados

Mencionar tecnologias usadas

5. Habilidades

Adicionar todas as habilidades técnicas

Pedir endorsements

Priorizar as mais relevantes

6. Recomendações

Pedir recomendações de colegas e gerentes

Retribuir com recomendações

13.4. Networking e Oportunidades

Estratégias de Networking:

1. Comunidades Online

Grupos de QA no LinkedIn

Comunidades no Discord/Slack

Fóruns de discussão

2. Eventos

Conferências de QA



Meetups locais

Webinars e workshops

3. Redes Sociais

Compartilhar conhecimento no LinkedIn

Publicar artigos no Medium

Participar de discussões

4. Contribuições Open Source

Contribuir em projetos de teste

Reportar bugs

Melhorar documentação

Capítulo 14: Preparação para Entrevistas e
Certificações

14.1. Perguntas Comuns em Entrevistas

Perguntas Técnicas:

1. Qual é a diferença entre QA e QC?

QA é proativo (prevenção), QC é reativo (detecção)

QA foca em processos, QC foca em produto

2. Explique a Pirâmide de Testes

Base: 70% testes de unidade

Meio: 20% testes de integração

Topo: 10% testes E2E

3. Qual é a importância de testes automatizados?

Execução rápida e repetível



Feedback contínuo

Redução de custo

Aumento de cobertura

4. Como você abordaria testar uma nova feature?

Entender requisitos

Criar plano de teste

Identificar casos de teste

Executar testes

Reportar defeitos

5. Qual é a diferença entre teste funcional e não funcional?

Funcional: verifica se o sistema faz o que deveria

Não funcional: verifica como o sistema funciona (performance, segurança)

Perguntas Comportamentais:

1. Descreva uma situação em que você encontrou um bug crítico

Contexto: quando e onde

Ação: como você identificou e reportou

Resultado: como foi resolvido

2. Como você lida com pressão e prazos apertados?

Priorizar testes críticos

Comunicar riscos

Trabalhar em equipe

3. Qual foi seu maior aprendizado em QA?

Importância de documentação

Colaboração com desenvolvedores

Automação de testes



14.2. Certificação ISTQB

O que é ISTQB?

ISTQB (International Software Testing Qualifications Board) é uma certificação
internacional reconhecida em QA.

Níveis:

1. Foundation Level

Conceitos básicos de teste

Tipos de teste

Planejamento e documentação

Duração: 1-2 meses de estudo

2. Advanced Level

Tópicos avançados

Especialidades (Automação, Performance, Security)

Duração: 2-3 meses de estudo

3. Expert Level

Nível mais alto

Experiência prática necessária

Tópicos do Foundation:

Conceitos fundamentais de teste

Testes durante o ciclo de vida

Técnicas de teste estático

Técnicas de design de teste

Gerenciamento de teste

Ferramentas de teste

Dicas de Estudo:

1. Usar livros oficiais ISTQB



2. Fazer simulados online

3. Estudar em grupos

4. Revisar conceitos regularmente

5. Praticar com exemplos reais

14.3. Outras Certificações Relevantes

Certificação Fornecedor Foco Duração

Cypress Certified Cypress Automação Web
2-4
semanas

Robot Framework
Certified

Robot Framework
Foundation

Automação
Versátil

2-4
semanas

AWS Certified QA Amazon QA em Cloud
4-6
semanas

Scrum Master Scrum Alliance Metodologia Ágil
2-3
semanas

Postman Certified Postman Testes de API
1-2
semanas

14.4. Preparação Técnica e Comportamental

Preparação Técnica:

1. Revisar conceitos fundamentais

Tipos de testes

Ciclo de vida de testes

Métricas de qualidade

2. Praticar com ferramentas

Escrever scripts Cypress

Criar testes Robot Framework

Testar APIs com Postman


